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Observable 2 — Steady-state velocity-force characteristics

In ferromagnetic domain walls: S. Lemerle et al., Phys. Rev. Lett. 80, 849 (1998).
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Overdamped dynamics & MSR dynamical action
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Experimental realisation: moving ferromagnetic domain wall

 V. Repain et al. @ Orsay (Pt/Co/Pt)

 Here focus on ‘quenched Edwards-Wilkinson’ (qEW):
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zu(z, t) + Fdis(z, u(z)) + fext + ⌘thermal(z, t)



 Avalanches organisation & statistics from creep to depinning

E. Ferrero, L. Foini, T. Giamarchi, A. B. Kolton, & A. Rosso, Phys. Rev. Lett. 118, 147208 (2017): "Spatio-temporal 
patterns in ultra-slow domain wall creep dynamics", cf. Figs. 1&3.
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knowledge, these analytical calculations are only done for
clean (nondisordered) systems.

Both levels of description, the elastic line model, and GL
models have been proven helpful to describe the physics
of disordered systems very well. However, a complete con-
nection between the two levels of description, or “model
reduction,” applicable both to clean and disordered systems, is
still lacking. Establishing a connection between both models
is extremely important for the case of disordered systems
since it allows one to obtain analytical predictions for the
more complex model, based on results for its simpler coun-
terpart. For several decades, different approaches to establish
a connection between both models in the clean case have
been proposed. Most of them focused on obtaining the lin-
ear tension of an interface in a GL model, as, for example,
in Refs. [23–26]. This question is quite generic since the
dynamics is that of the so-called “model A” [27]. A model
reduction has been determined for interfaces close to the crit-
ical temperature [28] or for flat walls in the absence of noise
[29], or using a Fokker-Planck viewpoint [30,31] or other
approaches for flat interfaces [32,33], and in the context of
kinetic roughening [34] or of the “drumhead model” [35,36].
For clean systems, more complex approaches than the one
we propose have also been developed, including effects that
we discard, for instance, the effect of curvature [33,34,37,38]
or of varying domain-wall width [35]. Note that the model
reduction is formally equivalent to the determination of ex-
tended particle states in quantum field theory [39,40], where
collective coordinate methods are similar to those of statistical
mechanics.

In this work, we connect the GL and EW models through
a simple procedure that requires few assumptions, and that
applies both to clean systems and to systems with quenched
disorder. Our method allows a direct quantitative comparison
between the parameters of each model, which in the case of
clean systems coincides with previous predictions, but has the
neat advantage of being applicable to disordered systems as
well. Our method allows to quantitatively relate how disorder
is translated from a model to the other. This is a first step to
get insight in how to extend the DES theory beyond the elastic
approximation, thus allowing for a better characterization and
understanding of experimental realizations of interfaces. The
plan of the paper is as follows. In Sec. II, to present and
benchmark our method, we briefly describe the GL model, es-
tablish the necessary assumptions, and explain our procedure
to connect this model to an Edwards-Wilkinson (EW) elastic
line model in the clean case. Complementary justifications of
our procedure are presented in Appendixes A to C. In Sec. III
we compute analytically how the roughness, an observable
measuring geometrical fluctuations of an interface, evolves as
a function of lengthscale and time for a one-dimensional (1D)
elastic line in the clean case. We probe the established connec-
tion between the models by performing extended simulations
on a two-dimensional-GL (2D-GL) model, a 1D-EW model:
we evaluate the roughness of interfaces which evolved starting
from a completely flat configuration, and show how interfaces
in both models, under our proposed connection, behave in
excellent agreement with the analytical prediction in the 1D
case. We also probe the connection between models numeri-
cally as a function of temperature. In Sec. IV, we introduce

FIG. 1. Snapshot of part of a system after solving numerically
the Langevin equation (see text) for a 2D Ginzburg-Landau model
[Eq. (3), with η = α = δ = γ = 1, T = 0.05, t = 105] to obtain the
evolution of the order parameter ϕ(x, y). The obtained interface for
this system is also shown in black. One of the fitted soliton profiles
ϕ∗(x) (for fixed y) is highlighted in dashed blue line. Inset: The
hyperbolic profile ϕ∗(x) from Eq. (7), its derivative (which charac-
terizes the “density” of the interface), and three typical states in the
local double-well potential.

quenched disorder in the GL system and show, by using our
method, how it translates quantitatively in the EW model into
a short-range-correlated disorder. We evaluate numerically the
roughness and its Fourier transform, the structure factor, and
show that they are in excellent agreement in both models,
validating our proposed procedure for disordered systems. We
finally conclude and discuss some perspectives of our work in
Sec. V.

II. FROM BULK DYNAMICS TO INTERFACE DYNAMICS
(CLEAN SYSTEMS)

We study the behavior of the region (or “interface”) sep-
arating two domains characterized by distinct values of the
local order parameter in a bulk model (see Fig. 1). At the bulk
level, we use a Ginzburg-Landau (GL) model to describe the
system, where the order parameter of each homogeneous re-
gion is a local minimum of the corresponding “ϕ4” potential.
We consider a nonconserved order parameter ϕ(r, t ), describ-
ing the local state of the system ruled by a GL Hamiltonian

HGL[ϕ] =
∫

dr
[γ

2
|∇rϕ|2 + V (ϕ) − hϕ

]
, (1)

where r ∈ Rn, and the ϕ4 potential

V (ϕ) = −α

2
ϕ2 + δ

4
ϕ4, (2)

with α > 0, δ > 0, models the existence of two preferred
values for ϕ: the minima of this double-well potential at

104204-2

Model reduction at equilibrium from 2D Ginzburg-Landau to 1D qEW
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Let's start from a 2D Ginzburg-Landau description of the magnetisation in thin films [no disorder]
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the Langevin equation (see text) for a 2D Ginzburg-Landau model
[Eq. (3), with η = α = δ = γ = 1, T = 0.05, t = 105] to obtain the
evolution of the order parameter ϕ(x, y). The obtained interface for
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hyperbolic profile ϕ∗(x) from Eq. (7), its derivative (which charac-
terizes the “density” of the interface), and three typical states in the
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quenched disorder in the GL system and show, by using our
method, how it translates quantitatively in the EW model into
a short-range-correlated disorder. We evaluate numerically the
roughness and its Fourier transform, the structure factor, and
show that they are in excellent agreement in both models,
validating our proposed procedure for disordered systems. We
finally conclude and discuss some perspectives of our work in
Sec. V.
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(CLEAN SYSTEMS)

We study the behavior of the region (or “interface”) sep-
arating two domains characterized by distinct values of the
local order parameter in a bulk model (see Fig. 1). At the bulk
level, we use a Ginzburg-Landau (GL) model to describe the
system, where the order parameter of each homogeneous re-
gion is a local minimum of the corresponding “ϕ4” potential.
We consider a nonconserved order parameter ϕ(r, t ), describ-
ing the local state of the system ruled by a GL Hamiltonian

HGL[ϕ] =
∫

dr
[γ
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|∇rϕ|2 + V (ϕ) − hϕ

]
, (1)

where r ∈ Rn, and the ϕ4 potential

V (ϕ) = −α
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ϕ2 + δ

4
ϕ4, (2)

with α > 0, δ > 0, models the existence of two preferred
values for ϕ: the minima of this double-well potential at
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knowledge, these analytical calculations are only done for
clean (nondisordered) systems.

Both levels of description, the elastic line model, and GL
models have been proven helpful to describe the physics
of disordered systems very well. However, a complete con-
nection between the two levels of description, or “model
reduction,” applicable both to clean and disordered systems, is
still lacking. Establishing a connection between both models
is extremely important for the case of disordered systems
since it allows one to obtain analytical predictions for the
more complex model, based on results for its simpler coun-
terpart. For several decades, different approaches to establish
a connection between both models in the clean case have
been proposed. Most of them focused on obtaining the lin-
ear tension of an interface in a GL model, as, for example,
in Refs. [23–26]. This question is quite generic since the
dynamics is that of the so-called “model A” [27]. A model
reduction has been determined for interfaces close to the crit-
ical temperature [28] or for flat walls in the absence of noise
[29], or using a Fokker-Planck viewpoint [30,31] or other
approaches for flat interfaces [32,33], and in the context of
kinetic roughening [34] or of the “drumhead model” [35,36].
For clean systems, more complex approaches than the one
we propose have also been developed, including effects that
we discard, for instance, the effect of curvature [33,34,37,38]
or of varying domain-wall width [35]. Note that the model
reduction is formally equivalent to the determination of ex-
tended particle states in quantum field theory [39,40], where
collective coordinate methods are similar to those of statistical
mechanics.

In this work, we connect the GL and EW models through
a simple procedure that requires few assumptions, and that
applies both to clean systems and to systems with quenched
disorder. Our method allows a direct quantitative comparison
between the parameters of each model, which in the case of
clean systems coincides with previous predictions, but has the
neat advantage of being applicable to disordered systems as
well. Our method allows to quantitatively relate how disorder
is translated from a model to the other. This is a first step to
get insight in how to extend the DES theory beyond the elastic
approximation, thus allowing for a better characterization and
understanding of experimental realizations of interfaces. The
plan of the paper is as follows. In Sec. II, to present and
benchmark our method, we briefly describe the GL model, es-
tablish the necessary assumptions, and explain our procedure
to connect this model to an Edwards-Wilkinson (EW) elastic
line model in the clean case. Complementary justifications of
our procedure are presented in Appendixes A to C. In Sec. III
we compute analytically how the roughness, an observable
measuring geometrical fluctuations of an interface, evolves as
a function of lengthscale and time for a one-dimensional (1D)
elastic line in the clean case. We probe the established connec-
tion between the models by performing extended simulations
on a two-dimensional-GL (2D-GL) model, a 1D-EW model:
we evaluate the roughness of interfaces which evolved starting
from a completely flat configuration, and show how interfaces
in both models, under our proposed connection, behave in
excellent agreement with the analytical prediction in the 1D
case. We also probe the connection between models numeri-
cally as a function of temperature. In Sec. IV, we introduce
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[Eq. (3), with η = α = δ = γ = 1, T = 0.05, t = 105] to obtain the
evolution of the order parameter ϕ(x, y). The obtained interface for
this system is also shown in black. One of the fitted soliton profiles
ϕ∗(x) (for fixed y) is highlighted in dashed blue line. Inset: The
hyperbolic profile ϕ∗(x) from Eq. (7), its derivative (which charac-
terizes the “density” of the interface), and three typical states in the
local double-well potential.
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method, how it translates quantitatively in the EW model into
a short-range-correlated disorder. We evaluate numerically the
roughness and its Fourier transform, the structure factor, and
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validating our proposed procedure for disordered systems. We
finally conclude and discuss some perspectives of our work in
Sec. V.
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system, where the order parameter of each homogeneous re-
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ing the local state of the system ruled by a GL Hamiltonian
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terizes the “density” of the interface), and three typical states in the
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a short-range-correlated disorder. We evaluate numerically the
roughness and its Fourier transform, the structure factor, and
show that they are in excellent agreement in both models,
validating our proposed procedure for disordered systems. We
finally conclude and discuss some perspectives of our work in
Sec. V.
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local order parameter in a bulk model (see Fig. 1). At the bulk
level, we use a Ginzburg-Landau (GL) model to describe the
system, where the order parameter of each homogeneous re-
gion is a local minimum of the corresponding “ϕ4” potential.
We consider a nonconserved order parameter ϕ(r, t ), describ-
ing the local state of the system ruled by a GL Hamiltonian

HGL[ϕ] =
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|∇rϕ|2 + V (ϕ) − hϕ

]
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V (ϕ) = −α

2
ϕ2 + δ

4
ϕ4, (2)

with α > 0, δ > 0, models the existence of two preferred
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±ϕ0 = ±
√

α/δ represent the two preferential states of the
system, and h is an external applied field.

In this section, to establish the procedure, we focus on
a clean system. The effect of disorder, which is crucial for
experimental realization of interfaces, will be studied in detail
in Sec. IV.

The simplest equation describing the time evolution of
the nonconserved order parameter ϕ(r, t ) in contact with a
thermal bath at temperature T is given by the overdamped
Langevin equation

η∂tϕ = −δHGL[ϕ]
δϕ

+ ξ = γ∇2
r ϕ − V ′(ϕ) + h + ξ , (3)

where ξ = ξ (r, t ) is a Gaussian white noise with zero mean
and two-point correlator

〈ξ (r2, t2)ξ (r1, t1)〉 = 2ηT δn(r2 − r1)δ(t2 − t1), (4)

η is the microscopic friction, and γ the amplitude of the elastic
cost associated to deformations of ϕ.

Interfaces are defined as the region where the order param-
eter shifts from a preferred value to another. We are interested
in studying interfaces in a 2D system with r = (x, y) (see
Fig. 1). To do so, if the x and y axes are chosen so that the
interface has a univalued shape at x = u(y, t ), a natural ansatz
to describe the field is ϕ(x, y, t ) = ϕ∗(x − u(y, t )), where the
function ϕ∗ describes the switch from a preferred value of
the order parameter to another. Such an ansatz can only be
approximate since, at nonzero temperature, the actual shape
of the switching profile actually depends on the y coordinate
and presents fluctuations of thermal origin (see Fig. 1). We
expect it to become correct at low temperature if the function
ϕ∗ is well chosen. As shown in Appendix A, the thermal
fluctuations of the order parameter ϕ(x, y, t ) in each of the
±ϕ0 phases are negligible compared to their mean value if the
temperature is much lower than T ( = αγ /δ. We thus expect
our analysis to be valid in the regime T ( T ( (see Ref. [41]
for a treatment of thermal fluctuations in the bulk). To de-
termine an effective equation of evolution for the so-called
displacement field u(y, t ), we substitute the ansatz into the
bulk Langevin Eq. (3):

−ηϕ∗′∂t u = γ
(
ϕ∗′′ + ϕ∗′′(∂yu)2 − ϕ∗′∂2

y u
)

− V ′(ϕ∗) + h + ξ . (5)

Physically, we expect that at low temperature the optimal
ϕ∗ is a solitonic profile that minimizes the energy of the
system at zero field h:

−δHGL[ϕ]
δϕ

∣∣∣
ϕ∗

= γ ϕ∗′′ − V ′(ϕ∗) = 0. (6)

Such an equation effectively describes the conservative mo-
tion of a “particle” of position ϕ∗ and time x that evolves in
a potential V . If the function V (ϕ) has two local minima, we
indeed have solitonic solutions that go from a minimum to
another as x goes from −∞ to +∞. In our case of interest
(2), we pick the soliton, or kink-type solution, that satisfies
the Dirichlet boundary conditions ϕ∗(±∞) = ∓ϕ0 whose ex-
plicit form is well known:

ϕ∗(x) = −ϕ0 tanh
( x
w

)
, (7)

as illustrated in Fig. 1. The parameters w, representing the
width of the interface, and ϕ0, representing the preferred val-
ues ±ϕ0 for the order parameter are given by

ϕ0 =
√

α

δ
, w =

√
2γ

α
. (8)

Substituting the identity (6) into Eq. (5), one obtains ex-
plicitly

−ηϕ∗′(x)∂t u(y, t ) = γ
[
ϕ∗′′(x)[∂yu(y, t )]2 − ϕ∗′(x)∂2

y u(y, t )
]

+ h + ξ [x + u(y, t ), y, t], (9)

where we can safely replace ξ (x + u(y, t ), y, t ) by ξ (x, y, t )
using the invariance by translation of the noise distribution.

The equation of evolution (9) is inconsistent (the depen-
dency in x is not the same for every term), even at zero
temperature. To obtain an equation of evolution for the posi-
tion of the interface, one multiplies Eq. (9) by ϕ∗′ to “localize”
the equation around the position of the interface, and one
integrates over x. A justification of this procedure is presented
in Appendix B [see Eq. (B9)]: at the energetic level, when
computing the force as deriving from a bulk or an effec-
tive Hamiltonian, a factor ϕ∗′ naturally appears between the
derivatives δ

δu or δ
δϕ∗

u
. See also Appendix C for a path-integral

approach where the integration over x comes naturally, di-
rectly in a dynamical formulation. Doing so, one obtains

ηN1∂t u = γN1∂
2
y u − γN2(∂yu)2 + hN3 + ξ̃ (y, t ), (10)

where

N1 ≡
∫ ∞

−∞
dx (ϕ∗′)2 = ϕ2

0
4

3w
= 2

√
2

3δ

√
α3

γ
, (11)

N2 ≡
∫ ∞

−∞
dx ϕ∗′′ϕ∗′ = 0, N3 =

∫ ∞

−∞
dx ϕ∗′ = −2ϕ0.

(12)

The effective noise

ξ̃ (y, t ) =
∫ ∞

−∞
dx ξ (x, y, t )ϕ∗′(x) (13)

is a linear superposition of Gaussian variables, and is thus also
a Gaussian white noise of zero average and correlations

〈ξ̃ (y2, t2)ξ̃ (y1, t1)〉 = 2ηT N1δ(y2 − y1)δ(t2 − t1). (14)

We thus find a Langevin equation for u(y, t ) of the form

η̃∂t u = c∂2
y u + F + ξ̃ , (15)

which is the EW equation [42] describing the time evolution
of an elastic line u(y, t ), with friction η̃, elasticity c, external
force F , and temperature T . By this procedure, we found
the friction and the force effectively “felt” by an interface in
the GL model, as well as its elastic constant, and how these
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system, and h is an external applied field.
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a clean system. The effect of disorder, which is crucial for
experimental realization of interfaces, will be studied in detail
in Sec. IV.
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the Dirichlet boundary conditions ϕ∗(±∞) = ∓ϕ0 whose ex-
plicit form is well known:

ϕ∗(x) = −ϕ0 tanh
( x
w

)
, (7)

as illustrated in Fig. 1. The parameters w, representing the
width of the interface, and ϕ0, representing the preferred val-
ues ±ϕ0 for the order parameter are given by

ϕ0 =
√

α

δ
, w =

√
2γ

α
. (8)

Substituting the identity (6) into Eq. (5), one obtains ex-
plicitly

−ηϕ∗′(x)∂t u(y, t ) = γ
[
ϕ∗′′(x)[∂yu(y, t )]2 − ϕ∗′(x)∂2

y u(y, t )
]

+ h + ξ [x + u(y, t ), y, t], (9)

where we can safely replace ξ (x + u(y, t ), y, t ) by ξ (x, y, t )
using the invariance by translation of the noise distribution.

The equation of evolution (9) is inconsistent (the depen-
dency in x is not the same for every term), even at zero
temperature. To obtain an equation of evolution for the posi-
tion of the interface, one multiplies Eq. (9) by ϕ∗′ to “localize”
the equation around the position of the interface, and one
integrates over x. A justification of this procedure is presented
in Appendix B [see Eq. (B9)]: at the energetic level, when
computing the force as deriving from a bulk or an effec-
tive Hamiltonian, a factor ϕ∗′ naturally appears between the
derivatives δ

δu or δ
δϕ∗

u
. See also Appendix C for a path-integral

approach where the integration over x comes naturally, di-
rectly in a dynamical formulation. Doing so, one obtains

ηN1∂t u = γN1∂
2
y u − γN2(∂yu)2 + hN3 + ξ̃ (y, t ), (10)

where

N1 ≡
∫ ∞

−∞
dx (ϕ∗′)2 = ϕ2

0
4

3w
= 2

√
2

3δ

√
α3

γ
, (11)

N2 ≡
∫ ∞

−∞
dx ϕ∗′′ϕ∗′ = 0, N3 =

∫ ∞

−∞
dx ϕ∗′ = −2ϕ0.

(12)

The effective noise

ξ̃ (y, t ) =
∫ ∞

−∞
dx ξ (x, y, t )ϕ∗′(x) (13)

is a linear superposition of Gaussian variables, and is thus also
a Gaussian white noise of zero average and correlations

〈ξ̃ (y2, t2)ξ̃ (y1, t1)〉 = 2ηT N1δ(y2 − y1)δ(t2 − t1). (14)

We thus find a Langevin equation for u(y, t ) of the form

η̃∂t u = c∂2
y u + F + ξ̃ , (15)

which is the EW equation [42] describing the time evolution
of an elastic line u(y, t ), with friction η̃, elasticity c, external
force F , and temperature T . By this procedure, we found
the friction and the force effectively “felt” by an interface in
the GL model, as well as its elastic constant, and how these
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±ϕ0 = ±
√

α/δ represent the two preferential states of the
system, and h is an external applied field.

In this section, to establish the procedure, we focus on
a clean system. The effect of disorder, which is crucial for
experimental realization of interfaces, will be studied in detail
in Sec. IV.

The simplest equation describing the time evolution of
the nonconserved order parameter ϕ(r, t ) in contact with a
thermal bath at temperature T is given by the overdamped
Langevin equation

η∂tϕ = −δHGL[ϕ]
δϕ

+ ξ = γ∇2
r ϕ − V ′(ϕ) + h + ξ , (3)

where ξ = ξ (r, t ) is a Gaussian white noise with zero mean
and two-point correlator

〈ξ (r2, t2)ξ (r1, t1)〉 = 2ηT δn(r2 − r1)δ(t2 − t1), (4)

η is the microscopic friction, and γ the amplitude of the elastic
cost associated to deformations of ϕ.

Interfaces are defined as the region where the order param-
eter shifts from a preferred value to another. We are interested
in studying interfaces in a 2D system with r = (x, y) (see
Fig. 1). To do so, if the x and y axes are chosen so that the
interface has a univalued shape at x = u(y, t ), a natural ansatz
to describe the field is ϕ(x, y, t ) = ϕ∗(x − u(y, t )), where the
function ϕ∗ describes the switch from a preferred value of
the order parameter to another. Such an ansatz can only be
approximate since, at nonzero temperature, the actual shape
of the switching profile actually depends on the y coordinate
and presents fluctuations of thermal origin (see Fig. 1). We
expect it to become correct at low temperature if the function
ϕ∗ is well chosen. As shown in Appendix A, the thermal
fluctuations of the order parameter ϕ(x, y, t ) in each of the
±ϕ0 phases are negligible compared to their mean value if the
temperature is much lower than T ( = αγ /δ. We thus expect
our analysis to be valid in the regime T ( T ( (see Ref. [41]
for a treatment of thermal fluctuations in the bulk). To de-
termine an effective equation of evolution for the so-called
displacement field u(y, t ), we substitute the ansatz into the
bulk Langevin Eq. (3):

−ηϕ∗′∂t u = γ
(
ϕ∗′′ + ϕ∗′′(∂yu)2 − ϕ∗′∂2

y u
)

− V ′(ϕ∗) + h + ξ . (5)

Physically, we expect that at low temperature the optimal
ϕ∗ is a solitonic profile that minimizes the energy of the
system at zero field h:

−δHGL[ϕ]
δϕ

∣∣∣
ϕ∗

= γ ϕ∗′′ − V ′(ϕ∗) = 0. (6)

Such an equation effectively describes the conservative mo-
tion of a “particle” of position ϕ∗ and time x that evolves in
a potential V . If the function V (ϕ) has two local minima, we
indeed have solitonic solutions that go from a minimum to
another as x goes from −∞ to +∞. In our case of interest
(2), we pick the soliton, or kink-type solution, that satisfies
the Dirichlet boundary conditions ϕ∗(±∞) = ∓ϕ0 whose ex-
plicit form is well known:

ϕ∗(x) = −ϕ0 tanh
( x
w

)
, (7)

as illustrated in Fig. 1. The parameters w, representing the
width of the interface, and ϕ0, representing the preferred val-
ues ±ϕ0 for the order parameter are given by

ϕ0 =
√

α

δ
, w =

√
2γ

α
. (8)

Substituting the identity (6) into Eq. (5), one obtains ex-
plicitly

−ηϕ∗′(x)∂t u(y, t ) = γ
[
ϕ∗′′(x)[∂yu(y, t )]2 − ϕ∗′(x)∂2

y u(y, t )
]

+ h + ξ [x + u(y, t ), y, t], (9)

where we can safely replace ξ (x + u(y, t ), y, t ) by ξ (x, y, t )
using the invariance by translation of the noise distribution.

The equation of evolution (9) is inconsistent (the depen-
dency in x is not the same for every term), even at zero
temperature. To obtain an equation of evolution for the posi-
tion of the interface, one multiplies Eq. (9) by ϕ∗′ to “localize”
the equation around the position of the interface, and one
integrates over x. A justification of this procedure is presented
in Appendix B [see Eq. (B9)]: at the energetic level, when
computing the force as deriving from a bulk or an effec-
tive Hamiltonian, a factor ϕ∗′ naturally appears between the
derivatives δ

δu or δ
δϕ∗

u
. See also Appendix C for a path-integral

approach where the integration over x comes naturally, di-
rectly in a dynamical formulation. Doing so, one obtains

ηN1∂t u = γN1∂
2
y u − γN2(∂yu)2 + hN3 + ξ̃ (y, t ), (10)

where

N1 ≡
∫ ∞

−∞
dx (ϕ∗′)2 = ϕ2

0
4

3w
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3δ

√
α3

γ
, (11)

N2 ≡
∫ ∞

−∞
dx ϕ∗′′ϕ∗′ = 0, N3 =

∫ ∞

−∞
dx ϕ∗′ = −2ϕ0.

(12)

The effective noise

ξ̃ (y, t ) =
∫ ∞

−∞
dx ξ (x, y, t )ϕ∗′(x) (13)

is a linear superposition of Gaussian variables, and is thus also
a Gaussian white noise of zero average and correlations

〈ξ̃ (y2, t2)ξ̃ (y1, t1)〉 = 2ηT N1δ(y2 − y1)δ(t2 − t1). (14)

We thus find a Langevin equation for u(y, t ) of the form

η̃∂t u = c∂2
y u + F + ξ̃ , (15)

which is the EW equation [42] describing the time evolution
of an elastic line u(y, t ), with friction η̃, elasticity c, external
force F , and temperature T . By this procedure, we found
the friction and the force effectively “felt” by an interface in
the GL model, as well as its elastic constant, and how these
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quantities are related with the model parameters as

η̃ ≡ ηN1 = η
2
√

2
3

α

δ

√
α

γ
,

c ≡ γN1 = 2
√

2
3

α

δ

√
αγ ,

F ≡ hN3 = −2
√

α

δ
h.

(16)

Note that the sign of the drive F does depend on the explicit
choice of soliton in Eq. (7): this is expected because the GL
field h favors the +ϕ0 phase and will act with opposite sign on
the other possible soliton +ϕ0 tanh(x/w). On the other hand,
η̃ and c are always defined as positive, and their numerical
prefactors depend on the specific normalized density of the
interface ρw(x) ∝ |ϕ∗′(x)| (see Appendix D).

By using the solitonic profile ϕ∗ [Eq. (7)] as an ansatz to
solve the Langevin equation for the GL model, we found a
procedure to go from the two-dimensional description of the
problem to an effective one-dimensional one. Interestingly,
the same relation between the elasticity c of a domain wall
in a one-dimensional system and the GL parameters can be
obtained by computing the energy cost Eel of the creation of a
domain wall in the system, as was obtained before (see, e.g.,
Ref. [29]).

In this section we showed how to connect the GL and the
DES descriptions at the level of their respective Langevin
equation. Our approach complements the one proposed in
Ref. [43] where both the elasticity and the thermal noise are
also taken into account, but with a much more phenomeno-
logical treatment of the effective thermal noise. The method
we propose provides us with an effective reduced dynam-
ics for the interface displacement field u(y, t ), that we test
numerically in the subsequent sections, on the evolution of
roughness starting from a flat initial condition. We will discuss
this procedure in presence of disorder in Sec. IV.

In Appendix B we present a generic discussion on the
model reduction from an equilibrium Hamiltonian viewpoint
that complements the dynamical approach presented in this
section. We show that the connection between the GL and
the DES descriptions can actually be performed directly at the
level of the Hamiltonian as well, if the system is assumed to be
at equilibrium. This is thus relevant for the long-time limit of
the equilibrium dynamics [i.e., Eq. (3) with no external field
h = 0], for which the probability of a given profile ϕ is simply
given by a Gibbs-Boltzmann distribution. This procedure on
the statics allows us to identify the DES elastic constant c
and the effective disorder, but it does not give us access to
the effective DES friction and noise since those pertain to the
dynamics, so we need to consider the Langevin equation as
we did in this section (see also Appendix C). Note also that
the passage from Eq. (9) to Eq. (10) bears similarity with the
projection operator of Refs. [33–35,44].

III. ROUGHNESS OF INTERFACES

Among the observables that characterize interfaces, one
of the most useful, convenient, and studied is the one that
measures the spatial correlations of the position u(y, t ) of the

interface at time t ,

B(r = |y2 − y1|, t ) = 〈[u(y2, t ) − u(y1, t )]2〉. (17)

This so-called roughness function characterizes the random
geometry of the interface. 〈 · · · 〉 denotes thermal average, and
· · · denotes the average over different disorder realizations
when appropriate. Usually, it is also convenient to compute
the Fourier transform, called the structure factor, defined as

S(q, t ) =
〈 1
L

u∗
q(t )uq(t )

〉
, (18)

where uq(t ) =
∑L−1

j=0 (u j (t ) − ū(t ))eiq j (ū(t ) is the mean posi-
tion of the whole interface, zero thereafter), and the discrete
Fourier modes q = 2πn/L with n = 1, . . . , L − 1.

When a flat domain wall is subjected to a thermal bath,
correlations in its geometry evolve in time as a result of
the competition between the domain wall elasticity and the
thermal fluctuations. For finite times, a memory of the initial
condition remains in Eq. (17). As t goes to infinity, if the in-
terface has a finite length, correlations spread along the whole
interface, and this memory of the initial condition disappears.

For the clean system we are considering so far, we can
compute analytically the full time dependence of this corre-
lation. One uses the linearity of the EW equation to solve
Eq. (15) for F = 0 [42], with an initially flat configuration.
Averaging over the thermal noise, one obtains

B(r, t ) = Tr
c

[
1 − 1√

πzr

(
e−z2r2 − 1

)
− 2√

π

∫ zr

0
e−t2

dt
]
,

(19)

where z =
√

η̃
8ct . At large times, Eq. (19) converges to the

static thermal roughness Bth(r) ≡ Tr/c.
We now use the result of Eq. (19) to assess the validity of

our bulk-to-line model reduction. To compare the numerical
efficiency of the 2D-GL and of the 1D-EW modelizations, we
first perform simulations of the 1D interface, i.e., we solve nu-
merically Eq. (15) [45] with parameters η̃ = c = 2

√
2

3 [taking
η = α = δ = γ = 1 in Eq. (16)], T = 0.05, and F = 0 [46].
Starting from a flat configuration, we perform simulations of
the elastic line during different times for different realizations.
For each final configuration obtained for u(y, t ) we compute
B(r, t ). In Fig. 2 we show the obtained roughness functions
for each realization and for an average of B(r, t ) over differ-
ent realizations. We find an excellent agreement between the
numerically obtained roughness functions and the analytical
result (19).

The analytical prediction for the roughness function given
by Eq. (19) gives us a benchmark to test the proposed connec-
tion between the GL model of Eq. (3) and the EW dynamics
of Eq. (15) in two and one dimensions, respectively. We
performed simulations of a 2D-GL system, by solving numer-
ically Eq. (3), with α = δ = γ = η = 1, at T = 0.05, with
periodic boundary conditions along y (interface direction),
and Dirichlet boundary conditions along x (see Fig. 1) [47].

Let us define, for convenience, the bulk order parameter
ϕu(x, y) = ϕ∗(x − u(y)) associated to an interface of position
u(y) and a solitonic profile given by Eq. (7) at each y. In the
simulation, we start with a flat domain wall, i.e., with an initial
condition ϕ(x, y, t = 0) = ϕu0 (x, y), with u0(y) = Lx/2, for
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±ϕ0 = ±
√

α/δ represent the two preferential states of the
system, and h is an external applied field.

In this section, to establish the procedure, we focus on
a clean system. The effect of disorder, which is crucial for
experimental realization of interfaces, will be studied in detail
in Sec. IV.

The simplest equation describing the time evolution of
the nonconserved order parameter ϕ(r, t ) in contact with a
thermal bath at temperature T is given by the overdamped
Langevin equation

η∂tϕ = −δHGL[ϕ]
δϕ

+ ξ = γ∇2
r ϕ − V ′(ϕ) + h + ξ , (3)

where ξ = ξ (r, t ) is a Gaussian white noise with zero mean
and two-point correlator

〈ξ (r2, t2)ξ (r1, t1)〉 = 2ηT δn(r2 − r1)δ(t2 − t1), (4)

η is the microscopic friction, and γ the amplitude of the elastic
cost associated to deformations of ϕ.

Interfaces are defined as the region where the order param-
eter shifts from a preferred value to another. We are interested
in studying interfaces in a 2D system with r = (x, y) (see
Fig. 1). To do so, if the x and y axes are chosen so that the
interface has a univalued shape at x = u(y, t ), a natural ansatz
to describe the field is ϕ(x, y, t ) = ϕ∗(x − u(y, t )), where the
function ϕ∗ describes the switch from a preferred value of
the order parameter to another. Such an ansatz can only be
approximate since, at nonzero temperature, the actual shape
of the switching profile actually depends on the y coordinate
and presents fluctuations of thermal origin (see Fig. 1). We
expect it to become correct at low temperature if the function
ϕ∗ is well chosen. As shown in Appendix A, the thermal
fluctuations of the order parameter ϕ(x, y, t ) in each of the
±ϕ0 phases are negligible compared to their mean value if the
temperature is much lower than T ( = αγ /δ. We thus expect
our analysis to be valid in the regime T ( T ( (see Ref. [41]
for a treatment of thermal fluctuations in the bulk). To de-
termine an effective equation of evolution for the so-called
displacement field u(y, t ), we substitute the ansatz into the
bulk Langevin Eq. (3):

−ηϕ∗′∂t u = γ
(
ϕ∗′′ + ϕ∗′′(∂yu)2 − ϕ∗′∂2

y u
)

− V ′(ϕ∗) + h + ξ . (5)

Physically, we expect that at low temperature the optimal
ϕ∗ is a solitonic profile that minimizes the energy of the
system at zero field h:

−δHGL[ϕ]
δϕ

∣∣∣
ϕ∗

= γ ϕ∗′′ − V ′(ϕ∗) = 0. (6)

Such an equation effectively describes the conservative mo-
tion of a “particle” of position ϕ∗ and time x that evolves in
a potential V . If the function V (ϕ) has two local minima, we
indeed have solitonic solutions that go from a minimum to
another as x goes from −∞ to +∞. In our case of interest
(2), we pick the soliton, or kink-type solution, that satisfies
the Dirichlet boundary conditions ϕ∗(±∞) = ∓ϕ0 whose ex-
plicit form is well known:

ϕ∗(x) = −ϕ0 tanh
( x
w

)
, (7)

as illustrated in Fig. 1. The parameters w, representing the
width of the interface, and ϕ0, representing the preferred val-
ues ±ϕ0 for the order parameter are given by

ϕ0 =
√

α

δ
, w =

√
2γ

α
. (8)

Substituting the identity (6) into Eq. (5), one obtains ex-
plicitly

−ηϕ∗′(x)∂t u(y, t ) = γ
[
ϕ∗′′(x)[∂yu(y, t )]2 − ϕ∗′(x)∂2

y u(y, t )
]

+ h + ξ [x + u(y, t ), y, t], (9)

where we can safely replace ξ (x + u(y, t ), y, t ) by ξ (x, y, t )
using the invariance by translation of the noise distribution.

The equation of evolution (9) is inconsistent (the depen-
dency in x is not the same for every term), even at zero
temperature. To obtain an equation of evolution for the posi-
tion of the interface, one multiplies Eq. (9) by ϕ∗′ to “localize”
the equation around the position of the interface, and one
integrates over x. A justification of this procedure is presented
in Appendix B [see Eq. (B9)]: at the energetic level, when
computing the force as deriving from a bulk or an effec-
tive Hamiltonian, a factor ϕ∗′ naturally appears between the
derivatives δ

δu or δ
δϕ∗

u
. See also Appendix C for a path-integral

approach where the integration over x comes naturally, di-
rectly in a dynamical formulation. Doing so, one obtains

ηN1∂t u = γN1∂
2
y u − γN2(∂yu)2 + hN3 + ξ̃ (y, t ), (10)

where

N1 ≡
∫ ∞

−∞
dx (ϕ∗′)2 = ϕ2

0
4

3w
= 2

√
2

3δ

√
α3

γ
, (11)

N2 ≡
∫ ∞

−∞
dx ϕ∗′′ϕ∗′ = 0, N3 =

∫ ∞

−∞
dx ϕ∗′ = −2ϕ0.

(12)

The effective noise

ξ̃ (y, t ) =
∫ ∞

−∞
dx ξ (x, y, t )ϕ∗′(x) (13)

is a linear superposition of Gaussian variables, and is thus also
a Gaussian white noise of zero average and correlations

〈ξ̃ (y2, t2)ξ̃ (y1, t1)〉 = 2ηT N1δ(y2 − y1)δ(t2 − t1). (14)

We thus find a Langevin equation for u(y, t ) of the form

η̃∂t u = c∂2
y u + F + ξ̃ , (15)

which is the EW equation [42] describing the time evolution
of an elastic line u(y, t ), with friction η̃, elasticity c, external
force F , and temperature T . By this procedure, we found
the friction and the force effectively “felt” by an interface in
the GL model, as well as its elastic constant, and how these
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±ϕ0 = ±
√

α/δ represent the two preferential states of the
system, and h is an external applied field.

In this section, to establish the procedure, we focus on
a clean system. The effect of disorder, which is crucial for
experimental realization of interfaces, will be studied in detail
in Sec. IV.

The simplest equation describing the time evolution of
the nonconserved order parameter ϕ(r, t ) in contact with a
thermal bath at temperature T is given by the overdamped
Langevin equation

η∂tϕ = −δHGL[ϕ]
δϕ

+ ξ = γ∇2
r ϕ − V ′(ϕ) + h + ξ , (3)

where ξ = ξ (r, t ) is a Gaussian white noise with zero mean
and two-point correlator

〈ξ (r2, t2)ξ (r1, t1)〉 = 2ηT δn(r2 − r1)δ(t2 − t1), (4)

η is the microscopic friction, and γ the amplitude of the elastic
cost associated to deformations of ϕ.

Interfaces are defined as the region where the order param-
eter shifts from a preferred value to another. We are interested
in studying interfaces in a 2D system with r = (x, y) (see
Fig. 1). To do so, if the x and y axes are chosen so that the
interface has a univalued shape at x = u(y, t ), a natural ansatz
to describe the field is ϕ(x, y, t ) = ϕ∗(x − u(y, t )), where the
function ϕ∗ describes the switch from a preferred value of
the order parameter to another. Such an ansatz can only be
approximate since, at nonzero temperature, the actual shape
of the switching profile actually depends on the y coordinate
and presents fluctuations of thermal origin (see Fig. 1). We
expect it to become correct at low temperature if the function
ϕ∗ is well chosen. As shown in Appendix A, the thermal
fluctuations of the order parameter ϕ(x, y, t ) in each of the
±ϕ0 phases are negligible compared to their mean value if the
temperature is much lower than T ( = αγ /δ. We thus expect
our analysis to be valid in the regime T ( T ( (see Ref. [41]
for a treatment of thermal fluctuations in the bulk). To de-
termine an effective equation of evolution for the so-called
displacement field u(y, t ), we substitute the ansatz into the
bulk Langevin Eq. (3):

−ηϕ∗′∂t u = γ
(
ϕ∗′′ + ϕ∗′′(∂yu)2 − ϕ∗′∂2

y u
)

− V ′(ϕ∗) + h + ξ . (5)

Physically, we expect that at low temperature the optimal
ϕ∗ is a solitonic profile that minimizes the energy of the
system at zero field h:

−δHGL[ϕ]
δϕ

∣∣∣
ϕ∗

= γ ϕ∗′′ − V ′(ϕ∗) = 0. (6)

Such an equation effectively describes the conservative mo-
tion of a “particle” of position ϕ∗ and time x that evolves in
a potential V . If the function V (ϕ) has two local minima, we
indeed have solitonic solutions that go from a minimum to
another as x goes from −∞ to +∞. In our case of interest
(2), we pick the soliton, or kink-type solution, that satisfies
the Dirichlet boundary conditions ϕ∗(±∞) = ∓ϕ0 whose ex-
plicit form is well known:

ϕ∗(x) = −ϕ0 tanh
( x
w

)
, (7)

as illustrated in Fig. 1. The parameters w, representing the
width of the interface, and ϕ0, representing the preferred val-
ues ±ϕ0 for the order parameter are given by

ϕ0 =
√

α

δ
, w =

√
2γ

α
. (8)

Substituting the identity (6) into Eq. (5), one obtains ex-
plicitly

−ηϕ∗′(x)∂t u(y, t ) = γ
[
ϕ∗′′(x)[∂yu(y, t )]2 − ϕ∗′(x)∂2

y u(y, t )
]

+ h + ξ [x + u(y, t ), y, t], (9)

where we can safely replace ξ (x + u(y, t ), y, t ) by ξ (x, y, t )
using the invariance by translation of the noise distribution.

The equation of evolution (9) is inconsistent (the depen-
dency in x is not the same for every term), even at zero
temperature. To obtain an equation of evolution for the posi-
tion of the interface, one multiplies Eq. (9) by ϕ∗′ to “localize”
the equation around the position of the interface, and one
integrates over x. A justification of this procedure is presented
in Appendix B [see Eq. (B9)]: at the energetic level, when
computing the force as deriving from a bulk or an effec-
tive Hamiltonian, a factor ϕ∗′ naturally appears between the
derivatives δ

δu or δ
δϕ∗

u
. See also Appendix C for a path-integral

approach where the integration over x comes naturally, di-
rectly in a dynamical formulation. Doing so, one obtains

ηN1∂t u = γN1∂
2
y u − γN2(∂yu)2 + hN3 + ξ̃ (y, t ), (10)

where
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The effective noise

ξ̃ (y, t ) =
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−∞
dx ξ (x, y, t )ϕ∗′(x) (13)

is a linear superposition of Gaussian variables, and is thus also
a Gaussian white noise of zero average and correlations

〈ξ̃ (y2, t2)ξ̃ (y1, t1)〉 = 2ηT N1δ(y2 − y1)δ(t2 − t1). (14)

We thus find a Langevin equation for u(y, t ) of the form

η̃∂t u = c∂2
y u + F + ξ̃ , (15)

which is the EW equation [42] describing the time evolution
of an elastic line u(y, t ), with friction η̃, elasticity c, external
force F , and temperature T . By this procedure, we found
the friction and the force effectively “felt” by an interface in
the GL model, as well as its elastic constant, and how these
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FIG. 2. Time dependence of the roughness B(r, t ), computed for interfaces in a 2D Ginzburg-Landau system (bottom figures) and for an
equivalent 1D Edwards-Wilkinson system (top figures), obtained for ten realizations (left figures) and for the average over ten realizations of
simulations which evolved during a time t = 10 j , j = 1, . . . , 6 (indicated by different colors), starting from a completely flat configuration.
The analytical prediction of the evolution of B(r, t ) [Eq. (19)] for an equivalent one-dimensional interface is shown on dashed colored lines
for different evolution times. The asymptotic value T

c r, expected for a completely stationarized interface, is shown in black dotted lines. On
the right, the final extracted interfaces for one of the realizations after each evolution time t are shown for both models. A portion of length
25.6 × 25.6 of a Ginzburg-Landau simulated system is also shown after the evolution times of t = 10 and t = 106, along with the detected
interface.

all y. The order parameter ϕ(x, y, t ) then evolves in time by
keeping the shape of a rectilinear domain wall profile, local-
ized along an interface of position u(y, t ) (see Fig. 1).

To obtain the effective interface position u(y, t ) for a given
configuration ϕ(x, y, t ) of GL model, we fit ϕ(x, y, t ) at fixed
y and t with a function ϕu(x, y), with the fitting parameters
{ϕ0,w, u(y)}. The interface position u(y, t ) is then given by
the fitted value u(y) [48]. A snapshot of part of a simulated
system is shown in Fig. 2 along with the detected interface
and some of the fitted interface positions u(y, t ). By following
this method, we computed u(y, t ) for different realizations of
simulations of a system which evolved for different times,
and we computed the roughness defined on Eq. (17) of these
functions.

The obtained values of the roughness are shown in Fig. 2
for different realizations at each time, and also for the average
of the roughness over different realizations. The roughness
functions of the interfaces obtained in our simulations are in
excellent agreement with the expected result after different
evolution times. For the pure system, this strongly supports
that we have a very precise method to connect both levels of
descriptions of interfaces, in the elastic approximation.

This mapping allows us to test for the deviations for
the pure elastic description of the interface. For the 1D-EW
model, where the elastic description is exact by construction,
no deviation from the elastic description indeed occurs. This
can be seen in Fig. 3, where we computed the roughness of
interfaces which evolved during a time t = 103 for different
temperatures T and compared it to the theoretical prediction
(19) that we denote B(r, T ) to emphasize the temperature
dependence. However, for the 2D-GL model, the measured

roughness functions match the predicted roughness only when
the ratio T/T " is sufficiently small (see Appendix A), with
T " = αγ /δ = 1 for our parameter values. We observe devi-
ations from the theoretically expected value of B(r, T ) for
temperatures larger than T = 0.15. Such a discrepancy as
temperature increases is expected since the approach we pro-
posed to go from the bulk to the line model is based on a
small-noise hypothesis.

IV. DISORDERED SYSTEMS

Disorder plays a key role inducing highly nonlinear effects
in the statics and dynamics of interfaces. In particular, it is
well known that, as a consequence of disorder, the inter-
face geometry is drastically changed compared to one only
subject to thermal fluctuations, and its study is the whole
point of the DES framework [9,18,19]. At small lengthscales,
thermal fluctuations are expected to dominate the interface ge-
ometry behavior [at equilibrium B(r) ≈ Bth(r) = T

c r2ζth , with
ζth = 1/2]. However, at large lengthscales, disorder induces
a change in the power-law behavior of the roughness, and
both the prefactor and the roughness exponent ζ are affected
[19,49]. The equilibrium roughness B(r) will thus be charac-
terized at large distances by a different exponent dependent on
the disorder type (for example, random-bond or random-field
types [50]). However, computing the roughness of interfaces
in the GL model is a much more challenging task. Let us
now extend the mapping presented in Sec. II to the case of
disordered systems.

To study the effect of quenched disorder on an interface
described by a GL model, we introduce fluctuations in the
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FIG. 2. Time dependence of the roughness B(r, t ), computed for interfaces in a 2D Ginzburg-Landau system (bottom figures) and for an
equivalent 1D Edwards-Wilkinson system (top figures), obtained for ten realizations (left figures) and for the average over ten realizations of
simulations which evolved during a time t = 10 j , j = 1, . . . , 6 (indicated by different colors), starting from a completely flat configuration.
The analytical prediction of the evolution of B(r, t ) [Eq. (19)] for an equivalent one-dimensional interface is shown on dashed colored lines
for different evolution times. The asymptotic value T

c r, expected for a completely stationarized interface, is shown in black dotted lines. On
the right, the final extracted interfaces for one of the realizations after each evolution time t are shown for both models. A portion of length
25.6 × 25.6 of a Ginzburg-Landau simulated system is also shown after the evolution times of t = 10 and t = 106, along with the detected
interface.

all y. The order parameter ϕ(x, y, t ) then evolves in time by
keeping the shape of a rectilinear domain wall profile, local-
ized along an interface of position u(y, t ) (see Fig. 1).

To obtain the effective interface position u(y, t ) for a given
configuration ϕ(x, y, t ) of GL model, we fit ϕ(x, y, t ) at fixed
y and t with a function ϕu(x, y), with the fitting parameters
{ϕ0,w, u(y)}. The interface position u(y, t ) is then given by
the fitted value u(y) [48]. A snapshot of part of a simulated
system is shown in Fig. 2 along with the detected interface
and some of the fitted interface positions u(y, t ). By following
this method, we computed u(y, t ) for different realizations of
simulations of a system which evolved for different times,
and we computed the roughness defined on Eq. (17) of these
functions.

The obtained values of the roughness are shown in Fig. 2
for different realizations at each time, and also for the average
of the roughness over different realizations. The roughness
functions of the interfaces obtained in our simulations are in
excellent agreement with the expected result after different
evolution times. For the pure system, this strongly supports
that we have a very precise method to connect both levels of
descriptions of interfaces, in the elastic approximation.

This mapping allows us to test for the deviations for
the pure elastic description of the interface. For the 1D-EW
model, where the elastic description is exact by construction,
no deviation from the elastic description indeed occurs. This
can be seen in Fig. 3, where we computed the roughness of
interfaces which evolved during a time t = 103 for different
temperatures T and compared it to the theoretical prediction
(19) that we denote B(r, T ) to emphasize the temperature
dependence. However, for the 2D-GL model, the measured

roughness functions match the predicted roughness only when
the ratio T/T " is sufficiently small (see Appendix A), with
T " = αγ /δ = 1 for our parameter values. We observe devi-
ations from the theoretically expected value of B(r, T ) for
temperatures larger than T = 0.15. Such a discrepancy as
temperature increases is expected since the approach we pro-
posed to go from the bulk to the line model is based on a
small-noise hypothesis.

IV. DISORDERED SYSTEMS

Disorder plays a key role inducing highly nonlinear effects
in the statics and dynamics of interfaces. In particular, it is
well known that, as a consequence of disorder, the inter-
face geometry is drastically changed compared to one only
subject to thermal fluctuations, and its study is the whole
point of the DES framework [9,18,19]. At small lengthscales,
thermal fluctuations are expected to dominate the interface ge-
ometry behavior [at equilibrium B(r) ≈ Bth(r) = T

c r2ζth , with
ζth = 1/2]. However, at large lengthscales, disorder induces
a change in the power-law behavior of the roughness, and
both the prefactor and the roughness exponent ζ are affected
[19,49]. The equilibrium roughness B(r) will thus be charac-
terized at large distances by a different exponent dependent on
the disorder type (for example, random-bond or random-field
types [50]). However, computing the roughness of interfaces
in the GL model is a much more challenging task. Let us
now extend the mapping presented in Sec. II to the case of
disordered systems.

To study the effect of quenched disorder on an interface
described by a GL model, we introduce fluctuations in the
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knowledge, these analytical calculations are only done for
clean (nondisordered) systems.

Both levels of description, the elastic line model, and GL
models have been proven helpful to describe the physics
of disordered systems very well. However, a complete con-
nection between the two levels of description, or “model
reduction,” applicable both to clean and disordered systems, is
still lacking. Establishing a connection between both models
is extremely important for the case of disordered systems
since it allows one to obtain analytical predictions for the
more complex model, based on results for its simpler coun-
terpart. For several decades, different approaches to establish
a connection between both models in the clean case have
been proposed. Most of them focused on obtaining the lin-
ear tension of an interface in a GL model, as, for example,
in Refs. [23–26]. This question is quite generic since the
dynamics is that of the so-called “model A” [27]. A model
reduction has been determined for interfaces close to the crit-
ical temperature [28] or for flat walls in the absence of noise
[29], or using a Fokker-Planck viewpoint [30,31] or other
approaches for flat interfaces [32,33], and in the context of
kinetic roughening [34] or of the “drumhead model” [35,36].
For clean systems, more complex approaches than the one
we propose have also been developed, including effects that
we discard, for instance, the effect of curvature [33,34,37,38]
or of varying domain-wall width [35]. Note that the model
reduction is formally equivalent to the determination of ex-
tended particle states in quantum field theory [39,40], where
collective coordinate methods are similar to those of statistical
mechanics.

In this work, we connect the GL and EW models through
a simple procedure that requires few assumptions, and that
applies both to clean systems and to systems with quenched
disorder. Our method allows a direct quantitative comparison
between the parameters of each model, which in the case of
clean systems coincides with previous predictions, but has the
neat advantage of being applicable to disordered systems as
well. Our method allows to quantitatively relate how disorder
is translated from a model to the other. This is a first step to
get insight in how to extend the DES theory beyond the elastic
approximation, thus allowing for a better characterization and
understanding of experimental realizations of interfaces. The
plan of the paper is as follows. In Sec. II, to present and
benchmark our method, we briefly describe the GL model, es-
tablish the necessary assumptions, and explain our procedure
to connect this model to an Edwards-Wilkinson (EW) elastic
line model in the clean case. Complementary justifications of
our procedure are presented in Appendixes A to C. In Sec. III
we compute analytically how the roughness, an observable
measuring geometrical fluctuations of an interface, evolves as
a function of lengthscale and time for a one-dimensional (1D)
elastic line in the clean case. We probe the established connec-
tion between the models by performing extended simulations
on a two-dimensional-GL (2D-GL) model, a 1D-EW model:
we evaluate the roughness of interfaces which evolved starting
from a completely flat configuration, and show how interfaces
in both models, under our proposed connection, behave in
excellent agreement with the analytical prediction in the 1D
case. We also probe the connection between models numeri-
cally as a function of temperature. In Sec. IV, we introduce

FIG. 1. Snapshot of part of a system after solving numerically
the Langevin equation (see text) for a 2D Ginzburg-Landau model
[Eq. (3), with η = α = δ = γ = 1, T = 0.05, t = 105] to obtain the
evolution of the order parameter ϕ(x, y). The obtained interface for
this system is also shown in black. One of the fitted soliton profiles
ϕ∗(x) (for fixed y) is highlighted in dashed blue line. Inset: The
hyperbolic profile ϕ∗(x) from Eq. (7), its derivative (which charac-
terizes the “density” of the interface), and three typical states in the
local double-well potential.

quenched disorder in the GL system and show, by using our
method, how it translates quantitatively in the EW model into
a short-range-correlated disorder. We evaluate numerically the
roughness and its Fourier transform, the structure factor, and
show that they are in excellent agreement in both models,
validating our proposed procedure for disordered systems. We
finally conclude and discuss some perspectives of our work in
Sec. V.

II. FROM BULK DYNAMICS TO INTERFACE DYNAMICS
(CLEAN SYSTEMS)

We study the behavior of the region (or “interface”) sep-
arating two domains characterized by distinct values of the
local order parameter in a bulk model (see Fig. 1). At the bulk
level, we use a Ginzburg-Landau (GL) model to describe the
system, where the order parameter of each homogeneous re-
gion is a local minimum of the corresponding “ϕ4” potential.
We consider a nonconserved order parameter ϕ(r, t ), describ-
ing the local state of the system ruled by a GL Hamiltonian

HGL[ϕ] =
∫

dr
[γ

2
|∇rϕ|2 + V (ϕ) − hϕ

]
, (1)

where r ∈ Rn, and the ϕ4 potential

V (ϕ) = −α

2
ϕ2 + δ

4
ϕ4, (2)

with α > 0, δ > 0, models the existence of two preferred
values for ϕ: the minima of this double-well potential at
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knowledge, these analytical calculations are only done for
clean (nondisordered) systems.

Both levels of description, the elastic line model, and GL
models have been proven helpful to describe the physics
of disordered systems very well. However, a complete con-
nection between the two levels of description, or “model
reduction,” applicable both to clean and disordered systems, is
still lacking. Establishing a connection between both models
is extremely important for the case of disordered systems
since it allows one to obtain analytical predictions for the
more complex model, based on results for its simpler coun-
terpart. For several decades, different approaches to establish
a connection between both models in the clean case have
been proposed. Most of them focused on obtaining the lin-
ear tension of an interface in a GL model, as, for example,
in Refs. [23–26]. This question is quite generic since the
dynamics is that of the so-called “model A” [27]. A model
reduction has been determined for interfaces close to the crit-
ical temperature [28] or for flat walls in the absence of noise
[29], or using a Fokker-Planck viewpoint [30,31] or other
approaches for flat interfaces [32,33], and in the context of
kinetic roughening [34] or of the “drumhead model” [35,36].
For clean systems, more complex approaches than the one
we propose have also been developed, including effects that
we discard, for instance, the effect of curvature [33,34,37,38]
or of varying domain-wall width [35]. Note that the model
reduction is formally equivalent to the determination of ex-
tended particle states in quantum field theory [39,40], where
collective coordinate methods are similar to those of statistical
mechanics.

In this work, we connect the GL and EW models through
a simple procedure that requires few assumptions, and that
applies both to clean systems and to systems with quenched
disorder. Our method allows a direct quantitative comparison
between the parameters of each model, which in the case of
clean systems coincides with previous predictions, but has the
neat advantage of being applicable to disordered systems as
well. Our method allows to quantitatively relate how disorder
is translated from a model to the other. This is a first step to
get insight in how to extend the DES theory beyond the elastic
approximation, thus allowing for a better characterization and
understanding of experimental realizations of interfaces. The
plan of the paper is as follows. In Sec. II, to present and
benchmark our method, we briefly describe the GL model, es-
tablish the necessary assumptions, and explain our procedure
to connect this model to an Edwards-Wilkinson (EW) elastic
line model in the clean case. Complementary justifications of
our procedure are presented in Appendixes A to C. In Sec. III
we compute analytically how the roughness, an observable
measuring geometrical fluctuations of an interface, evolves as
a function of lengthscale and time for a one-dimensional (1D)
elastic line in the clean case. We probe the established connec-
tion between the models by performing extended simulations
on a two-dimensional-GL (2D-GL) model, a 1D-EW model:
we evaluate the roughness of interfaces which evolved starting
from a completely flat configuration, and show how interfaces
in both models, under our proposed connection, behave in
excellent agreement with the analytical prediction in the 1D
case. We also probe the connection between models numeri-
cally as a function of temperature. In Sec. IV, we introduce

FIG. 1. Snapshot of part of a system after solving numerically
the Langevin equation (see text) for a 2D Ginzburg-Landau model
[Eq. (3), with η = α = δ = γ = 1, T = 0.05, t = 105] to obtain the
evolution of the order parameter ϕ(x, y). The obtained interface for
this system is also shown in black. One of the fitted soliton profiles
ϕ∗(x) (for fixed y) is highlighted in dashed blue line. Inset: The
hyperbolic profile ϕ∗(x) from Eq. (7), its derivative (which charac-
terizes the “density” of the interface), and three typical states in the
local double-well potential.

quenched disorder in the GL system and show, by using our
method, how it translates quantitatively in the EW model into
a short-range-correlated disorder. We evaluate numerically the
roughness and its Fourier transform, the structure factor, and
show that they are in excellent agreement in both models,
validating our proposed procedure for disordered systems. We
finally conclude and discuss some perspectives of our work in
Sec. V.

II. FROM BULK DYNAMICS TO INTERFACE DYNAMICS
(CLEAN SYSTEMS)

We study the behavior of the region (or “interface”) sep-
arating two domains characterized by distinct values of the
local order parameter in a bulk model (see Fig. 1). At the bulk
level, we use a Ginzburg-Landau (GL) model to describe the
system, where the order parameter of each homogeneous re-
gion is a local minimum of the corresponding “ϕ4” potential.
We consider a nonconserved order parameter ϕ(r, t ), describ-
ing the local state of the system ruled by a GL Hamiltonian

HGL[ϕ] =
∫

dr
[γ

2
|∇rϕ|2 + V (ϕ) − hϕ

]
, (1)

where r ∈ Rn, and the ϕ4 potential

V (ϕ) = −α

2
ϕ2 + δ

4
ϕ4, (2)

with α > 0, δ > 0, models the existence of two preferred
values for ϕ: the minima of this double-well potential at
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±ϕ0 = ±
√

α/δ represent the two preferential states of the
system, and h is an external applied field.

In this section, to establish the procedure, we focus on
a clean system. The effect of disorder, which is crucial for
experimental realization of interfaces, will be studied in detail
in Sec. IV.

The simplest equation describing the time evolution of
the nonconserved order parameter ϕ(r, t ) in contact with a
thermal bath at temperature T is given by the overdamped
Langevin equation

η∂tϕ = −δHGL[ϕ]
δϕ

+ ξ = γ∇2
r ϕ − V ′(ϕ) + h + ξ , (3)

where ξ = ξ (r, t ) is a Gaussian white noise with zero mean
and two-point correlator

〈ξ (r2, t2)ξ (r1, t1)〉 = 2ηT δn(r2 − r1)δ(t2 − t1), (4)

η is the microscopic friction, and γ the amplitude of the elastic
cost associated to deformations of ϕ.

Interfaces are defined as the region where the order param-
eter shifts from a preferred value to another. We are interested
in studying interfaces in a 2D system with r = (x, y) (see
Fig. 1). To do so, if the x and y axes are chosen so that the
interface has a univalued shape at x = u(y, t ), a natural ansatz
to describe the field is ϕ(x, y, t ) = ϕ∗(x − u(y, t )), where the
function ϕ∗ describes the switch from a preferred value of
the order parameter to another. Such an ansatz can only be
approximate since, at nonzero temperature, the actual shape
of the switching profile actually depends on the y coordinate
and presents fluctuations of thermal origin (see Fig. 1). We
expect it to become correct at low temperature if the function
ϕ∗ is well chosen. As shown in Appendix A, the thermal
fluctuations of the order parameter ϕ(x, y, t ) in each of the
±ϕ0 phases are negligible compared to their mean value if the
temperature is much lower than T ( = αγ /δ. We thus expect
our analysis to be valid in the regime T ( T ( (see Ref. [41]
for a treatment of thermal fluctuations in the bulk). To de-
termine an effective equation of evolution for the so-called
displacement field u(y, t ), we substitute the ansatz into the
bulk Langevin Eq. (3):

−ηϕ∗′∂t u = γ
(
ϕ∗′′ + ϕ∗′′(∂yu)2 − ϕ∗′∂2

y u
)

− V ′(ϕ∗) + h + ξ . (5)

Physically, we expect that at low temperature the optimal
ϕ∗ is a solitonic profile that minimizes the energy of the
system at zero field h:

−δHGL[ϕ]
δϕ

∣∣∣
ϕ∗

= γ ϕ∗′′ − V ′(ϕ∗) = 0. (6)

Such an equation effectively describes the conservative mo-
tion of a “particle” of position ϕ∗ and time x that evolves in
a potential V . If the function V (ϕ) has two local minima, we
indeed have solitonic solutions that go from a minimum to
another as x goes from −∞ to +∞. In our case of interest
(2), we pick the soliton, or kink-type solution, that satisfies
the Dirichlet boundary conditions ϕ∗(±∞) = ∓ϕ0 whose ex-
plicit form is well known:

ϕ∗(x) = −ϕ0 tanh
( x
w

)
, (7)

as illustrated in Fig. 1. The parameters w, representing the
width of the interface, and ϕ0, representing the preferred val-
ues ±ϕ0 for the order parameter are given by

ϕ0 =
√

α

δ
, w =

√
2γ

α
. (8)

Substituting the identity (6) into Eq. (5), one obtains ex-
plicitly

−ηϕ∗′(x)∂t u(y, t ) = γ
[
ϕ∗′′(x)[∂yu(y, t )]2 − ϕ∗′(x)∂2

y u(y, t )
]

+ h + ξ [x + u(y, t ), y, t], (9)

where we can safely replace ξ (x + u(y, t ), y, t ) by ξ (x, y, t )
using the invariance by translation of the noise distribution.

The equation of evolution (9) is inconsistent (the depen-
dency in x is not the same for every term), even at zero
temperature. To obtain an equation of evolution for the posi-
tion of the interface, one multiplies Eq. (9) by ϕ∗′ to “localize”
the equation around the position of the interface, and one
integrates over x. A justification of this procedure is presented
in Appendix B [see Eq. (B9)]: at the energetic level, when
computing the force as deriving from a bulk or an effec-
tive Hamiltonian, a factor ϕ∗′ naturally appears between the
derivatives δ

δu or δ
δϕ∗

u
. See also Appendix C for a path-integral

approach where the integration over x comes naturally, di-
rectly in a dynamical formulation. Doing so, one obtains

ηN1∂t u = γN1∂
2
y u − γN2(∂yu)2 + hN3 + ξ̃ (y, t ), (10)

where

N1 ≡
∫ ∞

−∞
dx (ϕ∗′)2 = ϕ2

0
4

3w
= 2

√
2

3δ

√
α3

γ
, (11)

N2 ≡
∫ ∞

−∞
dx ϕ∗′′ϕ∗′ = 0, N3 =

∫ ∞

−∞
dx ϕ∗′ = −2ϕ0.

(12)

The effective noise

ξ̃ (y, t ) =
∫ ∞

−∞
dx ξ (x, y, t )ϕ∗′(x) (13)

is a linear superposition of Gaussian variables, and is thus also
a Gaussian white noise of zero average and correlations

〈ξ̃ (y2, t2)ξ̃ (y1, t1)〉 = 2ηT N1δ(y2 − y1)δ(t2 − t1). (14)

We thus find a Langevin equation for u(y, t ) of the form

η̃∂t u = c∂2
y u + F + ξ̃ , (15)

which is the EW equation [42] describing the time evolution
of an elastic line u(y, t ), with friction η̃, elasticity c, external
force F , and temperature T . By this procedure, we found
the friction and the force effectively “felt” by an interface in
the GL model, as well as its elastic constant, and how these
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knowledge, these analytical calculations are only done for
clean (nondisordered) systems.

Both levels of description, the elastic line model, and GL
models have been proven helpful to describe the physics
of disordered systems very well. However, a complete con-
nection between the two levels of description, or “model
reduction,” applicable both to clean and disordered systems, is
still lacking. Establishing a connection between both models
is extremely important for the case of disordered systems
since it allows one to obtain analytical predictions for the
more complex model, based on results for its simpler coun-
terpart. For several decades, different approaches to establish
a connection between both models in the clean case have
been proposed. Most of them focused on obtaining the lin-
ear tension of an interface in a GL model, as, for example,
in Refs. [23–26]. This question is quite generic since the
dynamics is that of the so-called “model A” [27]. A model
reduction has been determined for interfaces close to the crit-
ical temperature [28] or for flat walls in the absence of noise
[29], or using a Fokker-Planck viewpoint [30,31] or other
approaches for flat interfaces [32,33], and in the context of
kinetic roughening [34] or of the “drumhead model” [35,36].
For clean systems, more complex approaches than the one
we propose have also been developed, including effects that
we discard, for instance, the effect of curvature [33,34,37,38]
or of varying domain-wall width [35]. Note that the model
reduction is formally equivalent to the determination of ex-
tended particle states in quantum field theory [39,40], where
collective coordinate methods are similar to those of statistical
mechanics.

In this work, we connect the GL and EW models through
a simple procedure that requires few assumptions, and that
applies both to clean systems and to systems with quenched
disorder. Our method allows a direct quantitative comparison
between the parameters of each model, which in the case of
clean systems coincides with previous predictions, but has the
neat advantage of being applicable to disordered systems as
well. Our method allows to quantitatively relate how disorder
is translated from a model to the other. This is a first step to
get insight in how to extend the DES theory beyond the elastic
approximation, thus allowing for a better characterization and
understanding of experimental realizations of interfaces. The
plan of the paper is as follows. In Sec. II, to present and
benchmark our method, we briefly describe the GL model, es-
tablish the necessary assumptions, and explain our procedure
to connect this model to an Edwards-Wilkinson (EW) elastic
line model in the clean case. Complementary justifications of
our procedure are presented in Appendixes A to C. In Sec. III
we compute analytically how the roughness, an observable
measuring geometrical fluctuations of an interface, evolves as
a function of lengthscale and time for a one-dimensional (1D)
elastic line in the clean case. We probe the established connec-
tion between the models by performing extended simulations
on a two-dimensional-GL (2D-GL) model, a 1D-EW model:
we evaluate the roughness of interfaces which evolved starting
from a completely flat configuration, and show how interfaces
in both models, under our proposed connection, behave in
excellent agreement with the analytical prediction in the 1D
case. We also probe the connection between models numeri-
cally as a function of temperature. In Sec. IV, we introduce

FIG. 1. Snapshot of part of a system after solving numerically
the Langevin equation (see text) for a 2D Ginzburg-Landau model
[Eq. (3), with η = α = δ = γ = 1, T = 0.05, t = 105] to obtain the
evolution of the order parameter ϕ(x, y). The obtained interface for
this system is also shown in black. One of the fitted soliton profiles
ϕ∗(x) (for fixed y) is highlighted in dashed blue line. Inset: The
hyperbolic profile ϕ∗(x) from Eq. (7), its derivative (which charac-
terizes the “density” of the interface), and three typical states in the
local double-well potential.

quenched disorder in the GL system and show, by using our
method, how it translates quantitatively in the EW model into
a short-range-correlated disorder. We evaluate numerically the
roughness and its Fourier transform, the structure factor, and
show that they are in excellent agreement in both models,
validating our proposed procedure for disordered systems. We
finally conclude and discuss some perspectives of our work in
Sec. V.

II. FROM BULK DYNAMICS TO INTERFACE DYNAMICS
(CLEAN SYSTEMS)

We study the behavior of the region (or “interface”) sep-
arating two domains characterized by distinct values of the
local order parameter in a bulk model (see Fig. 1). At the bulk
level, we use a Ginzburg-Landau (GL) model to describe the
system, where the order parameter of each homogeneous re-
gion is a local minimum of the corresponding “ϕ4” potential.
We consider a nonconserved order parameter ϕ(r, t ), describ-
ing the local state of the system ruled by a GL Hamiltonian

HGL[ϕ] =
∫

dr
[γ

2
|∇rϕ|2 + V (ϕ) − hϕ

]
, (1)

where r ∈ Rn, and the ϕ4 potential

V (ϕ) = −α

2
ϕ2 + δ

4
ϕ4, (2)

with α > 0, δ > 0, models the existence of two preferred
values for ϕ: the minima of this double-well potential at
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is translated from a model to the other. This is a first step to
get insight in how to extend the DES theory beyond the elastic
approximation, thus allowing for a better characterization and
understanding of experimental realizations of interfaces. The
plan of the paper is as follows. In Sec. II, to present and
benchmark our method, we briefly describe the GL model, es-
tablish the necessary assumptions, and explain our procedure
to connect this model to an Edwards-Wilkinson (EW) elastic
line model in the clean case. Complementary justifications of
our procedure are presented in Appendixes A to C. In Sec. III
we compute analytically how the roughness, an observable
measuring geometrical fluctuations of an interface, evolves as
a function of lengthscale and time for a one-dimensional (1D)
elastic line in the clean case. We probe the established connec-
tion between the models by performing extended simulations
on a two-dimensional-GL (2D-GL) model, a 1D-EW model:
we evaluate the roughness of interfaces which evolved starting
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excellent agreement with the analytical prediction in the 1D
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ϕ∗(x) (for fixed y) is highlighted in dashed blue line. Inset: The
hyperbolic profile ϕ∗(x) from Eq. (7), its derivative (which charac-
terizes the “density” of the interface), and three typical states in the
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quenched disorder in the GL system and show, by using our
method, how it translates quantitatively in the EW model into
a short-range-correlated disorder. We evaluate numerically the
roughness and its Fourier transform, the structure factor, and
show that they are in excellent agreement in both models,
validating our proposed procedure for disordered systems. We
finally conclude and discuss some perspectives of our work in
Sec. V.

II. FROM BULK DYNAMICS TO INTERFACE DYNAMICS
(CLEAN SYSTEMS)

We study the behavior of the region (or “interface”) sep-
arating two domains characterized by distinct values of the
local order parameter in a bulk model (see Fig. 1). At the bulk
level, we use a Ginzburg-Landau (GL) model to describe the
system, where the order parameter of each homogeneous re-
gion is a local minimum of the corresponding “ϕ4” potential.
We consider a nonconserved order parameter ϕ(r, t ), describ-
ing the local state of the system ruled by a GL Hamiltonian

HGL[ϕ] =
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|∇rϕ|2 + V (ϕ) − hϕ

]
, (1)
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±ϕ0 = ±
√

α/δ represent the two preferential states of the
system, and h is an external applied field.

In this section, to establish the procedure, we focus on
a clean system. The effect of disorder, which is crucial for
experimental realization of interfaces, will be studied in detail
in Sec. IV.

The simplest equation describing the time evolution of
the nonconserved order parameter ϕ(r, t ) in contact with a
thermal bath at temperature T is given by the overdamped
Langevin equation

η∂tϕ = −δHGL[ϕ]
δϕ

+ ξ = γ∇2
r ϕ − V ′(ϕ) + h + ξ , (3)

where ξ = ξ (r, t ) is a Gaussian white noise with zero mean
and two-point correlator

〈ξ (r2, t2)ξ (r1, t1)〉 = 2ηT δn(r2 − r1)δ(t2 − t1), (4)

η is the microscopic friction, and γ the amplitude of the elastic
cost associated to deformations of ϕ.

Interfaces are defined as the region where the order param-
eter shifts from a preferred value to another. We are interested
in studying interfaces in a 2D system with r = (x, y) (see
Fig. 1). To do so, if the x and y axes are chosen so that the
interface has a univalued shape at x = u(y, t ), a natural ansatz
to describe the field is ϕ(x, y, t ) = ϕ∗(x − u(y, t )), where the
function ϕ∗ describes the switch from a preferred value of
the order parameter to another. Such an ansatz can only be
approximate since, at nonzero temperature, the actual shape
of the switching profile actually depends on the y coordinate
and presents fluctuations of thermal origin (see Fig. 1). We
expect it to become correct at low temperature if the function
ϕ∗ is well chosen. As shown in Appendix A, the thermal
fluctuations of the order parameter ϕ(x, y, t ) in each of the
±ϕ0 phases are negligible compared to their mean value if the
temperature is much lower than T ( = αγ /δ. We thus expect
our analysis to be valid in the regime T ( T ( (see Ref. [41]
for a treatment of thermal fluctuations in the bulk). To de-
termine an effective equation of evolution for the so-called
displacement field u(y, t ), we substitute the ansatz into the
bulk Langevin Eq. (3):

−ηϕ∗′∂t u = γ
(
ϕ∗′′ + ϕ∗′′(∂yu)2 − ϕ∗′∂2

y u
)

− V ′(ϕ∗) + h + ξ . (5)

Physically, we expect that at low temperature the optimal
ϕ∗ is a solitonic profile that minimizes the energy of the
system at zero field h:

−δHGL[ϕ]
δϕ

∣∣∣
ϕ∗

= γ ϕ∗′′ − V ′(ϕ∗) = 0. (6)

Such an equation effectively describes the conservative mo-
tion of a “particle” of position ϕ∗ and time x that evolves in
a potential V . If the function V (ϕ) has two local minima, we
indeed have solitonic solutions that go from a minimum to
another as x goes from −∞ to +∞. In our case of interest
(2), we pick the soliton, or kink-type solution, that satisfies
the Dirichlet boundary conditions ϕ∗(±∞) = ∓ϕ0 whose ex-
plicit form is well known:

ϕ∗(x) = −ϕ0 tanh
( x
w

)
, (7)

as illustrated in Fig. 1. The parameters w, representing the
width of the interface, and ϕ0, representing the preferred val-
ues ±ϕ0 for the order parameter are given by

ϕ0 =
√

α

δ
, w =

√
2γ

α
. (8)

Substituting the identity (6) into Eq. (5), one obtains ex-
plicitly

−ηϕ∗′(x)∂t u(y, t ) = γ
[
ϕ∗′′(x)[∂yu(y, t )]2 − ϕ∗′(x)∂2

y u(y, t )
]

+ h + ξ [x + u(y, t ), y, t], (9)

where we can safely replace ξ (x + u(y, t ), y, t ) by ξ (x, y, t )
using the invariance by translation of the noise distribution.

The equation of evolution (9) is inconsistent (the depen-
dency in x is not the same for every term), even at zero
temperature. To obtain an equation of evolution for the posi-
tion of the interface, one multiplies Eq. (9) by ϕ∗′ to “localize”
the equation around the position of the interface, and one
integrates over x. A justification of this procedure is presented
in Appendix B [see Eq. (B9)]: at the energetic level, when
computing the force as deriving from a bulk or an effec-
tive Hamiltonian, a factor ϕ∗′ naturally appears between the
derivatives δ

δu or δ
δϕ∗

u
. See also Appendix C for a path-integral

approach where the integration over x comes naturally, di-
rectly in a dynamical formulation. Doing so, one obtains

ηN1∂t u = γN1∂
2
y u − γN2(∂yu)2 + hN3 + ξ̃ (y, t ), (10)

where

N1 ≡
∫ ∞

−∞
dx (ϕ∗′)2 = ϕ2

0
4

3w
= 2

√
2

3δ

√
α3

γ
, (11)

N2 ≡
∫ ∞

−∞
dx ϕ∗′′ϕ∗′ = 0, N3 =

∫ ∞

−∞
dx ϕ∗′ = −2ϕ0.

(12)

The effective noise

ξ̃ (y, t ) =
∫ ∞

−∞
dx ξ (x, y, t )ϕ∗′(x) (13)

is a linear superposition of Gaussian variables, and is thus also
a Gaussian white noise of zero average and correlations

〈ξ̃ (y2, t2)ξ̃ (y1, t1)〉 = 2ηT N1δ(y2 − y1)δ(t2 − t1). (14)

We thus find a Langevin equation for u(y, t ) of the form

η̃∂t u = c∂2
y u + F + ξ̃ , (15)

which is the EW equation [42] describing the time evolution
of an elastic line u(y, t ), with friction η̃, elasticity c, external
force F , and temperature T . By this procedure, we found
the friction and the force effectively “felt” by an interface in
the GL model, as well as its elastic constant, and how these
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FIG. 3. Temperature dependence of the roughness B(r, T ) for a 2D Ginzburg-Landau system (bottom figures) and for an equivalent 1D
Edwards-Wilkinson system (top figures), obtained for ten realizations (left figures) and for the average over ten realizations of simulations
which evolved during a time t = 103 at temperatures T = 0.05, 0.07, 0.1, 0.15, 0.2, 0.3 (indicated by different colors), starting from a
completely flat configuration. The analytical predictions of the evolution in time of B(r, T ) [Eq. (19)] for an equivalent one-dimensional
interface is shown on dashed colored lines for different temperatures. The final interfaces obtained for one realization are also shown for both
models at different temperatures. A portion of the Ginzburg-Landau system is also shown at T = 0.05 and T = 0.3, along with the detected
interface, shown in black.

height of the double-well potential V (ϕ) of (2) as

Vζ (ϕ(r)) = V (ϕ(r))[1 + εζ (r)]. (20)

Here ζ (r) is a random number at position r taken from a
Gaussian distribution with zero mean and unit variance whose
correlations satisfy ζ (ri )ζ (r j ) = δ2(ri − r j ), where ri, j are
the relative distance between the simulation cells i and j, and
we recall that · · · denotes the average over different disorder
realizations.

When using the ansatz ϕ(x, y, t ) = ϕ∗(x − u(y, t )), the
Langevin equation describing the evolution of the order pa-
rameter now becomes, instead of Eq. (9),

−ηϕ∗′∂t u =γ
(
ϕ∗′′ + ϕ∗′′(∂yu)2 − ϕ∗′∂2

y u
)

(21)

− V ′(ϕ∗) − εζ (x, y)V ′(ϕ∗) + ξ (x, y, t ).

Following the procedure of Sec. II, i.e., by multiplying by
−ϕ∗′, using the soliton equation (6) γ ϕ∗′′ = V ′(ϕ∗), and inte-
grating x over the whole space, we find an effective Langevin
equation for the displacement field u(y, t )

η̃∂t u = c∂2
y u + Fp[u(y, t ), y] + F + ξ̃ (y, t ). (22)

Compared to Eq. (15), we have now the extra term

Fp(u, y) = εγ

∫ ∞

−∞
dx ζ (x + u, y)ϕ∗′′(x)ϕ∗′(x), (23)

which represents a quenched pinning force acting on the inter-
face. As a linear combination of a Gaussian field, the random
pinning force Fp is again Gaussian. Its average is zero and its
correlations are given by

Fp(u1, y1)Fp(u2, y2) = ε2δ(y1 − y2))(u2 − u1), (24)

where the correlator along the x direction is defined as

)(u) = γ 2
∫ ∞

−∞
dx (ϕ∗′ϕ∗′′)(x)(ϕ∗′ϕ∗′′)(x − u). (25)

Using the explicit shape (7) of the profile ϕ∗(x), one ob-
tains by direct computation

)(u) = 2α3γ

3δ2w3 sinh9
( u

w

)
[
115 sinh

( u
w

)
+ 90 sinh

(3u
w

)

+ 7 sinh
(5u

w

)
− u

w
336 cosh

( u
w

)

− u
w

81 cosh
(3u

w

)
− u

w
3 cosh

(5u
w

)]
. (26)

The effective disorder correlations are thus short-range with
a correlation length of the order of the interface width w
(see also Appendix D). The Fourier transform of the corre-
lator (25), defined as )̂(q) =

∫ ∞
−∞ du e−iqu)(u), is given by

)̂(q) = Dg2(q,w), where D = 2α3γ
9δ2 and

g(q,w) = π

8w
(wq)2(w2q2 + 4) sinh−1

(πwq
2

)
. (27)

A pinning force with correlations given by Eq. (24), for
fixed y and continuous u, may be generated by computing

Fp(u, y) = ε
√

D
LT

∑M−1
n=0 eiqnug(qn,w)zn, where qn = 2π

Lx
n and

zn are complex Hermitian random numbers taken from a
Gaussian distributions with zero mean and unit variance, with
z0 = 0. Here Lx = Mδl is the transverse length of the system.
In Fig. 4 we show the computed correlations of pinning forces
generated with this method, for M = 104, δl = 0.1, D = 1,
ε = 1 [51].
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FIG. 3. Temperature dependence of the roughness B(r, T ) for a 2D Ginzburg-Landau system (bottom figures) and for an equivalent 1D
Edwards-Wilkinson system (top figures), obtained for ten realizations (left figures) and for the average over ten realizations of simulations
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completely flat configuration. The analytical predictions of the evolution in time of B(r, T ) [Eq. (19)] for an equivalent one-dimensional
interface is shown on dashed colored lines for different temperatures. The final interfaces obtained for one realization are also shown for both
models at different temperatures. A portion of the Ginzburg-Landau system is also shown at T = 0.05 and T = 0.3, along with the detected
interface, shown in black.

height of the double-well potential V (ϕ) of (2) as

Vζ (ϕ(r)) = V (ϕ(r))[1 + εζ (r)]. (20)

Here ζ (r) is a random number at position r taken from a
Gaussian distribution with zero mean and unit variance whose
correlations satisfy ζ (ri )ζ (r j ) = δ2(ri − r j ), where ri, j are
the relative distance between the simulation cells i and j, and
we recall that · · · denotes the average over different disorder
realizations.

When using the ansatz ϕ(x, y, t ) = ϕ∗(x − u(y, t )), the
Langevin equation describing the evolution of the order pa-
rameter now becomes, instead of Eq. (9),

−ηϕ∗′∂t u =γ
(
ϕ∗′′ + ϕ∗′′(∂yu)2 − ϕ∗′∂2

y u
)

(21)

− V ′(ϕ∗) − εζ (x, y)V ′(ϕ∗) + ξ (x, y, t ).

Following the procedure of Sec. II, i.e., by multiplying by
−ϕ∗′, using the soliton equation (6) γ ϕ∗′′ = V ′(ϕ∗), and inte-
grating x over the whole space, we find an effective Langevin
equation for the displacement field u(y, t )

η̃∂t u = c∂2
y u + Fp[u(y, t ), y] + F + ξ̃ (y, t ). (22)

Compared to Eq. (15), we have now the extra term

Fp(u, y) = εγ

∫ ∞

−∞
dx ζ (x + u, y)ϕ∗′′(x)ϕ∗′(x), (23)

which represents a quenched pinning force acting on the inter-
face. As a linear combination of a Gaussian field, the random
pinning force Fp is again Gaussian. Its average is zero and its
correlations are given by

Fp(u1, y1)Fp(u2, y2) = ε2δ(y1 − y2))(u2 − u1), (24)

where the correlator along the x direction is defined as

)(u) = γ 2
∫ ∞

−∞
dx (ϕ∗′ϕ∗′′)(x)(ϕ∗′ϕ∗′′)(x − u). (25)

Using the explicit shape (7) of the profile ϕ∗(x), one ob-
tains by direct computation

)(u) = 2α3γ

3δ2w3 sinh9
( u

w

)
[
115 sinh

( u
w

)
+ 90 sinh

(3u
w

)

+ 7 sinh
(5u

w

)
− u

w
336 cosh

( u
w

)

− u
w

81 cosh
(3u

w

)
− u

w
3 cosh

(5u
w

)]
. (26)

The effective disorder correlations are thus short-range with
a correlation length of the order of the interface width w
(see also Appendix D). The Fourier transform of the corre-
lator (25), defined as )̂(q) =

∫ ∞
−∞ du e−iqu)(u), is given by

)̂(q) = Dg2(q,w), where D = 2α3γ
9δ2 and

g(q,w) = π
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. (27)

A pinning force with correlations given by Eq. (24), for
fixed y and continuous u, may be generated by computing
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Gaussian distributions with zero mean and unit variance, with
z0 = 0. Here Lx = Mδl is the transverse length of the system.
In Fig. 4 we show the computed correlations of pinning forces
generated with this method, for M = 104, δl = 0.1, D = 1,
ε = 1 [51].
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interface, shown in black.

height of the double-well potential V (ϕ) of (2) as

Vζ (ϕ(r)) = V (ϕ(r))[1 + εζ (r)]. (20)

Here ζ (r) is a random number at position r taken from a
Gaussian distribution with zero mean and unit variance whose
correlations satisfy ζ (ri )ζ (r j ) = δ2(ri − r j ), where ri, j are
the relative distance between the simulation cells i and j, and
we recall that · · · denotes the average over different disorder
realizations.

When using the ansatz ϕ(x, y, t ) = ϕ∗(x − u(y, t )), the
Langevin equation describing the evolution of the order pa-
rameter now becomes, instead of Eq. (9),

−ηϕ∗′∂t u =γ
(
ϕ∗′′ + ϕ∗′′(∂yu)2 − ϕ∗′∂2

y u
)

(21)

− V ′(ϕ∗) − εζ (x, y)V ′(ϕ∗) + ξ (x, y, t ).

Following the procedure of Sec. II, i.e., by multiplying by
−ϕ∗′, using the soliton equation (6) γ ϕ∗′′ = V ′(ϕ∗), and inte-
grating x over the whole space, we find an effective Langevin
equation for the displacement field u(y, t )

η̃∂t u = c∂2
y u + Fp[u(y, t ), y] + F + ξ̃ (y, t ). (22)

Compared to Eq. (15), we have now the extra term

Fp(u, y) = εγ

∫ ∞

−∞
dx ζ (x + u, y)ϕ∗′′(x)ϕ∗′(x), (23)

which represents a quenched pinning force acting on the inter-
face. As a linear combination of a Gaussian field, the random
pinning force Fp is again Gaussian. Its average is zero and its
correlations are given by

Fp(u1, y1)Fp(u2, y2) = ε2δ(y1 − y2))(u2 − u1), (24)

where the correlator along the x direction is defined as

)(u) = γ 2
∫ ∞

−∞
dx (ϕ∗′ϕ∗′′)(x)(ϕ∗′ϕ∗′′)(x − u). (25)

Using the explicit shape (7) of the profile ϕ∗(x), one ob-
tains by direct computation

)(u) = 2α3γ

3δ2w3 sinh9
( u

w

)
[
115 sinh
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)
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)
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(5u
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. (26)

The effective disorder correlations are thus short-range with
a correlation length of the order of the interface width w
(see also Appendix D). The Fourier transform of the corre-
lator (25), defined as )̂(q) =

∫ ∞
−∞ du e−iqu)(u), is given by

)̂(q) = Dg2(q,w), where D = 2α3γ
9δ2 and

g(q,w) = π

8w
(wq)2(w2q2 + 4) sinh−1

(πwq
2

)
. (27)

A pinning force with correlations given by Eq. (24), for
fixed y and continuous u, may be generated by computing

Fp(u, y) = ε
√

D
LT

∑M−1
n=0 eiqnug(qn,w)zn, where qn = 2π

Lx
n and

zn are complex Hermitian random numbers taken from a
Gaussian distributions with zero mean and unit variance, with
z0 = 0. Here Lx = Mδl is the transverse length of the system.
In Fig. 4 we show the computed correlations of pinning forces
generated with this method, for M = 104, δl = 0.1, D = 1,
ε = 1 [51].
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FIG. 3. Temperature dependence of the roughness B(r, T ) for a 2D Ginzburg-Landau system (bottom figures) and for an equivalent 1D
Edwards-Wilkinson system (top figures), obtained for ten realizations (left figures) and for the average over ten realizations of simulations
which evolved during a time t = 103 at temperatures T = 0.05, 0.07, 0.1, 0.15, 0.2, 0.3 (indicated by different colors), starting from a
completely flat configuration. The analytical predictions of the evolution in time of B(r, T ) [Eq. (19)] for an equivalent one-dimensional
interface is shown on dashed colored lines for different temperatures. The final interfaces obtained for one realization are also shown for both
models at different temperatures. A portion of the Ginzburg-Landau system is also shown at T = 0.05 and T = 0.3, along with the detected
interface, shown in black.

height of the double-well potential V (ϕ) of (2) as

Vζ (ϕ(r)) = V (ϕ(r))[1 + εζ (r)]. (20)

Here ζ (r) is a random number at position r taken from a
Gaussian distribution with zero mean and unit variance whose
correlations satisfy ζ (ri )ζ (r j ) = δ2(ri − r j ), where ri, j are
the relative distance between the simulation cells i and j, and
we recall that · · · denotes the average over different disorder
realizations.

When using the ansatz ϕ(x, y, t ) = ϕ∗(x − u(y, t )), the
Langevin equation describing the evolution of the order pa-
rameter now becomes, instead of Eq. (9),

−ηϕ∗′∂t u =γ
(
ϕ∗′′ + ϕ∗′′(∂yu)2 − ϕ∗′∂2

y u
)

(21)

− V ′(ϕ∗) − εζ (x, y)V ′(ϕ∗) + ξ (x, y, t ).

Following the procedure of Sec. II, i.e., by multiplying by
−ϕ∗′, using the soliton equation (6) γ ϕ∗′′ = V ′(ϕ∗), and inte-
grating x over the whole space, we find an effective Langevin
equation for the displacement field u(y, t )

η̃∂t u = c∂2
y u + Fp[u(y, t ), y] + F + ξ̃ (y, t ). (22)

Compared to Eq. (15), we have now the extra term

Fp(u, y) = εγ

∫ ∞

−∞
dx ζ (x + u, y)ϕ∗′′(x)ϕ∗′(x), (23)

which represents a quenched pinning force acting on the inter-
face. As a linear combination of a Gaussian field, the random
pinning force Fp is again Gaussian. Its average is zero and its
correlations are given by

Fp(u1, y1)Fp(u2, y2) = ε2δ(y1 − y2))(u2 − u1), (24)

where the correlator along the x direction is defined as

)(u) = γ 2
∫ ∞

−∞
dx (ϕ∗′ϕ∗′′)(x)(ϕ∗′ϕ∗′′)(x − u). (25)

Using the explicit shape (7) of the profile ϕ∗(x), one ob-
tains by direct computation

)(u) = 2α3γ

3δ2w3 sinh9
( u

w

)
[
115 sinh

( u
w

)
+ 90 sinh

(3u
w

)

+ 7 sinh
(5u

w

)
− u

w
336 cosh

( u
w

)

− u
w

81 cosh
(3u

w

)
− u

w
3 cosh

(5u
w

)]
. (26)

The effective disorder correlations are thus short-range with
a correlation length of the order of the interface width w
(see also Appendix D). The Fourier transform of the corre-
lator (25), defined as )̂(q) =

∫ ∞
−∞ du e−iqu)(u), is given by

)̂(q) = Dg2(q,w), where D = 2α3γ
9δ2 and

g(q,w) = π

8w
(wq)2(w2q2 + 4) sinh−1

(πwq
2

)
. (27)

A pinning force with correlations given by Eq. (24), for
fixed y and continuous u, may be generated by computing

Fp(u, y) = ε
√

D
LT

∑M−1
n=0 eiqnug(qn,w)zn, where qn = 2π

Lx
n and

zn are complex Hermitian random numbers taken from a
Gaussian distributions with zero mean and unit variance, with
z0 = 0. Here Lx = Mδl is the transverse length of the system.
In Fig. 4 we show the computed correlations of pinning forces
generated with this method, for M = 104, δl = 0.1, D = 1,
ε = 1 [51].
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FIG. 3. Temperature dependence of the roughness B(r, T ) for a 2D Ginzburg-Landau system (bottom figures) and for an equivalent 1D
Edwards-Wilkinson system (top figures), obtained for ten realizations (left figures) and for the average over ten realizations of simulations
which evolved during a time t = 103 at temperatures T = 0.05, 0.07, 0.1, 0.15, 0.2, 0.3 (indicated by different colors), starting from a
completely flat configuration. The analytical predictions of the evolution in time of B(r, T ) [Eq. (19)] for an equivalent one-dimensional
interface is shown on dashed colored lines for different temperatures. The final interfaces obtained for one realization are also shown for both
models at different temperatures. A portion of the Ginzburg-Landau system is also shown at T = 0.05 and T = 0.3, along with the detected
interface, shown in black.

height of the double-well potential V (ϕ) of (2) as

Vζ (ϕ(r)) = V (ϕ(r))[1 + εζ (r)]. (20)

Here ζ (r) is a random number at position r taken from a
Gaussian distribution with zero mean and unit variance whose
correlations satisfy ζ (ri )ζ (r j ) = δ2(ri − r j ), where ri, j are
the relative distance between the simulation cells i and j, and
we recall that · · · denotes the average over different disorder
realizations.

When using the ansatz ϕ(x, y, t ) = ϕ∗(x − u(y, t )), the
Langevin equation describing the evolution of the order pa-
rameter now becomes, instead of Eq. (9),

−ηϕ∗′∂t u =γ
(
ϕ∗′′ + ϕ∗′′(∂yu)2 − ϕ∗′∂2

y u
)

(21)

− V ′(ϕ∗) − εζ (x, y)V ′(ϕ∗) + ξ (x, y, t ).

Following the procedure of Sec. II, i.e., by multiplying by
−ϕ∗′, using the soliton equation (6) γ ϕ∗′′ = V ′(ϕ∗), and inte-
grating x over the whole space, we find an effective Langevin
equation for the displacement field u(y, t )

η̃∂t u = c∂2
y u + Fp[u(y, t ), y] + F + ξ̃ (y, t ). (22)

Compared to Eq. (15), we have now the extra term

Fp(u, y) = εγ

∫ ∞

−∞
dx ζ (x + u, y)ϕ∗′′(x)ϕ∗′(x), (23)

which represents a quenched pinning force acting on the inter-
face. As a linear combination of a Gaussian field, the random
pinning force Fp is again Gaussian. Its average is zero and its
correlations are given by

Fp(u1, y1)Fp(u2, y2) = ε2δ(y1 − y2))(u2 − u1), (24)

where the correlator along the x direction is defined as

)(u) = γ 2
∫ ∞

−∞
dx (ϕ∗′ϕ∗′′)(x)(ϕ∗′ϕ∗′′)(x − u). (25)

Using the explicit shape (7) of the profile ϕ∗(x), one ob-
tains by direct computation

)(u) = 2α3γ

3δ2w3 sinh9
( u

w

)
[
115 sinh

( u
w

)
+ 90 sinh

(3u
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. (26)

The effective disorder correlations are thus short-range with
a correlation length of the order of the interface width w
(see also Appendix D). The Fourier transform of the corre-
lator (25), defined as )̂(q) =

∫ ∞
−∞ du e−iqu)(u), is given by

)̂(q) = Dg2(q,w), where D = 2α3γ
9δ2 and

g(q,w) = π

8w
(wq)2(w2q2 + 4) sinh−1

(πwq
2

)
. (27)

A pinning force with correlations given by Eq. (24), for
fixed y and continuous u, may be generated by computing

Fp(u, y) = ε
√

D
LT

∑M−1
n=0 eiqnug(qn,w)zn, where qn = 2π

Lx
n and

zn are complex Hermitian random numbers taken from a
Gaussian distributions with zero mean and unit variance, with
z0 = 0. Here Lx = Mδl is the transverse length of the system.
In Fig. 4 we show the computed correlations of pinning forces
generated with this method, for M = 104, δl = 0.1, D = 1,
ε = 1 [51].
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FIG. 3. Temperature dependence of the roughness B(r, T ) for a 2D Ginzburg-Landau system (bottom figures) and for an equivalent 1D
Edwards-Wilkinson system (top figures), obtained for ten realizations (left figures) and for the average over ten realizations of simulations
which evolved during a time t = 103 at temperatures T = 0.05, 0.07, 0.1, 0.15, 0.2, 0.3 (indicated by different colors), starting from a
completely flat configuration. The analytical predictions of the evolution in time of B(r, T ) [Eq. (19)] for an equivalent one-dimensional
interface is shown on dashed colored lines for different temperatures. The final interfaces obtained for one realization are also shown for both
models at different temperatures. A portion of the Ginzburg-Landau system is also shown at T = 0.05 and T = 0.3, along with the detected
interface, shown in black.

height of the double-well potential V (ϕ) of (2) as

Vζ (ϕ(r)) = V (ϕ(r))[1 + εζ (r)]. (20)

Here ζ (r) is a random number at position r taken from a
Gaussian distribution with zero mean and unit variance whose
correlations satisfy ζ (ri )ζ (r j ) = δ2(ri − r j ), where ri, j are
the relative distance between the simulation cells i and j, and
we recall that · · · denotes the average over different disorder
realizations.

When using the ansatz ϕ(x, y, t ) = ϕ∗(x − u(y, t )), the
Langevin equation describing the evolution of the order pa-
rameter now becomes, instead of Eq. (9),

−ηϕ∗′∂t u =γ
(
ϕ∗′′ + ϕ∗′′(∂yu)2 − ϕ∗′∂2

y u
)

(21)

− V ′(ϕ∗) − εζ (x, y)V ′(ϕ∗) + ξ (x, y, t ).

Following the procedure of Sec. II, i.e., by multiplying by
−ϕ∗′, using the soliton equation (6) γ ϕ∗′′ = V ′(ϕ∗), and inte-
grating x over the whole space, we find an effective Langevin
equation for the displacement field u(y, t )

η̃∂t u = c∂2
y u + Fp[u(y, t ), y] + F + ξ̃ (y, t ). (22)

Compared to Eq. (15), we have now the extra term

Fp(u, y) = εγ

∫ ∞

−∞
dx ζ (x + u, y)ϕ∗′′(x)ϕ∗′(x), (23)

which represents a quenched pinning force acting on the inter-
face. As a linear combination of a Gaussian field, the random
pinning force Fp is again Gaussian. Its average is zero and its
correlations are given by

Fp(u1, y1)Fp(u2, y2) = ε2δ(y1 − y2))(u2 − u1), (24)

where the correlator along the x direction is defined as

)(u) = γ 2
∫ ∞

−∞
dx (ϕ∗′ϕ∗′′)(x)(ϕ∗′ϕ∗′′)(x − u). (25)

Using the explicit shape (7) of the profile ϕ∗(x), one ob-
tains by direct computation

)(u) = 2α3γ

3δ2w3 sinh9
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The effective disorder correlations are thus short-range with
a correlation length of the order of the interface width w
(see also Appendix D). The Fourier transform of the corre-
lator (25), defined as )̂(q) =

∫ ∞
−∞ du e−iqu)(u), is given by

)̂(q) = Dg2(q,w), where D = 2α3γ
9δ2 and

g(q,w) = π

8w
(wq)2(w2q2 + 4) sinh−1

(πwq
2

)
. (27)

A pinning force with correlations given by Eq. (24), for
fixed y and continuous u, may be generated by computing

Fp(u, y) = ε
√

D
LT

∑M−1
n=0 eiqnug(qn,w)zn, where qn = 2π

Lx
n and

zn are complex Hermitian random numbers taken from a
Gaussian distributions with zero mean and unit variance, with
z0 = 0. Here Lx = Mδl is the transverse length of the system.
In Fig. 4 we show the computed correlations of pinning forces
generated with this method, for M = 104, δl = 0.1, D = 1,
ε = 1 [51].
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knowledge, these analytical calculations are only done for
clean (nondisordered) systems.

Both levels of description, the elastic line model, and GL
models have been proven helpful to describe the physics
of disordered systems very well. However, a complete con-
nection between the two levels of description, or “model
reduction,” applicable both to clean and disordered systems, is
still lacking. Establishing a connection between both models
is extremely important for the case of disordered systems
since it allows one to obtain analytical predictions for the
more complex model, based on results for its simpler coun-
terpart. For several decades, different approaches to establish
a connection between both models in the clean case have
been proposed. Most of them focused on obtaining the lin-
ear tension of an interface in a GL model, as, for example,
in Refs. [23–26]. This question is quite generic since the
dynamics is that of the so-called “model A” [27]. A model
reduction has been determined for interfaces close to the crit-
ical temperature [28] or for flat walls in the absence of noise
[29], or using a Fokker-Planck viewpoint [30,31] or other
approaches for flat interfaces [32,33], and in the context of
kinetic roughening [34] or of the “drumhead model” [35,36].
For clean systems, more complex approaches than the one
we propose have also been developed, including effects that
we discard, for instance, the effect of curvature [33,34,37,38]
or of varying domain-wall width [35]. Note that the model
reduction is formally equivalent to the determination of ex-
tended particle states in quantum field theory [39,40], where
collective coordinate methods are similar to those of statistical
mechanics.

In this work, we connect the GL and EW models through
a simple procedure that requires few assumptions, and that
applies both to clean systems and to systems with quenched
disorder. Our method allows a direct quantitative comparison
between the parameters of each model, which in the case of
clean systems coincides with previous predictions, but has the
neat advantage of being applicable to disordered systems as
well. Our method allows to quantitatively relate how disorder
is translated from a model to the other. This is a first step to
get insight in how to extend the DES theory beyond the elastic
approximation, thus allowing for a better characterization and
understanding of experimental realizations of interfaces. The
plan of the paper is as follows. In Sec. II, to present and
benchmark our method, we briefly describe the GL model, es-
tablish the necessary assumptions, and explain our procedure
to connect this model to an Edwards-Wilkinson (EW) elastic
line model in the clean case. Complementary justifications of
our procedure are presented in Appendixes A to C. In Sec. III
we compute analytically how the roughness, an observable
measuring geometrical fluctuations of an interface, evolves as
a function of lengthscale and time for a one-dimensional (1D)
elastic line in the clean case. We probe the established connec-
tion between the models by performing extended simulations
on a two-dimensional-GL (2D-GL) model, a 1D-EW model:
we evaluate the roughness of interfaces which evolved starting
from a completely flat configuration, and show how interfaces
in both models, under our proposed connection, behave in
excellent agreement with the analytical prediction in the 1D
case. We also probe the connection between models numeri-
cally as a function of temperature. In Sec. IV, we introduce

FIG. 1. Snapshot of part of a system after solving numerically
the Langevin equation (see text) for a 2D Ginzburg-Landau model
[Eq. (3), with η = α = δ = γ = 1, T = 0.05, t = 105] to obtain the
evolution of the order parameter ϕ(x, y). The obtained interface for
this system is also shown in black. One of the fitted soliton profiles
ϕ∗(x) (for fixed y) is highlighted in dashed blue line. Inset: The
hyperbolic profile ϕ∗(x) from Eq. (7), its derivative (which charac-
terizes the “density” of the interface), and three typical states in the
local double-well potential.

quenched disorder in the GL system and show, by using our
method, how it translates quantitatively in the EW model into
a short-range-correlated disorder. We evaluate numerically the
roughness and its Fourier transform, the structure factor, and
show that they are in excellent agreement in both models,
validating our proposed procedure for disordered systems. We
finally conclude and discuss some perspectives of our work in
Sec. V.

II. FROM BULK DYNAMICS TO INTERFACE DYNAMICS
(CLEAN SYSTEMS)

We study the behavior of the region (or “interface”) sep-
arating two domains characterized by distinct values of the
local order parameter in a bulk model (see Fig. 1). At the bulk
level, we use a Ginzburg-Landau (GL) model to describe the
system, where the order parameter of each homogeneous re-
gion is a local minimum of the corresponding “ϕ4” potential.
We consider a nonconserved order parameter ϕ(r, t ), describ-
ing the local state of the system ruled by a GL Hamiltonian

HGL[ϕ] =
∫

dr
[γ

2
|∇rϕ|2 + V (ϕ) − hϕ

]
, (1)

where r ∈ Rn, and the ϕ4 potential

V (ϕ) = −α

2
ϕ2 + δ

4
ϕ4, (2)

with α > 0, δ > 0, models the existence of two preferred
values for ϕ: the minima of this double-well potential at
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FIG. 3. Temperature dependence of the roughness B(r, T ) for a 2D Ginzburg-Landau system (bottom figures) and for an equivalent 1D
Edwards-Wilkinson system (top figures), obtained for ten realizations (left figures) and for the average over ten realizations of simulations
which evolved during a time t = 103 at temperatures T = 0.05, 0.07, 0.1, 0.15, 0.2, 0.3 (indicated by different colors), starting from a
completely flat configuration. The analytical predictions of the evolution in time of B(r, T ) [Eq. (19)] for an equivalent one-dimensional
interface is shown on dashed colored lines for different temperatures. The final interfaces obtained for one realization are also shown for both
models at different temperatures. A portion of the Ginzburg-Landau system is also shown at T = 0.05 and T = 0.3, along with the detected
interface, shown in black.

height of the double-well potential V (ϕ) of (2) as

Vζ (ϕ(r)) = V (ϕ(r))[1 + εζ (r)]. (20)

Here ζ (r) is a random number at position r taken from a
Gaussian distribution with zero mean and unit variance whose
correlations satisfy ζ (ri )ζ (r j ) = δ2(ri − r j ), where ri, j are
the relative distance between the simulation cells i and j, and
we recall that · · · denotes the average over different disorder
realizations.

When using the ansatz ϕ(x, y, t ) = ϕ∗(x − u(y, t )), the
Langevin equation describing the evolution of the order pa-
rameter now becomes, instead of Eq. (9),

−ηϕ∗′∂t u =γ
(
ϕ∗′′ + ϕ∗′′(∂yu)2 − ϕ∗′∂2

y u
)

(21)

− V ′(ϕ∗) − εζ (x, y)V ′(ϕ∗) + ξ (x, y, t ).

Following the procedure of Sec. II, i.e., by multiplying by
−ϕ∗′, using the soliton equation (6) γ ϕ∗′′ = V ′(ϕ∗), and inte-
grating x over the whole space, we find an effective Langevin
equation for the displacement field u(y, t )

η̃∂t u = c∂2
y u + Fp[u(y, t ), y] + F + ξ̃ (y, t ). (22)

Compared to Eq. (15), we have now the extra term

Fp(u, y) = εγ

∫ ∞

−∞
dx ζ (x + u, y)ϕ∗′′(x)ϕ∗′(x), (23)

which represents a quenched pinning force acting on the inter-
face. As a linear combination of a Gaussian field, the random
pinning force Fp is again Gaussian. Its average is zero and its
correlations are given by

Fp(u1, y1)Fp(u2, y2) = ε2δ(y1 − y2))(u2 − u1), (24)

where the correlator along the x direction is defined as

)(u) = γ 2
∫ ∞

−∞
dx (ϕ∗′ϕ∗′′)(x)(ϕ∗′ϕ∗′′)(x − u). (25)

Using the explicit shape (7) of the profile ϕ∗(x), one ob-
tains by direct computation

)(u) = 2α3γ
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The effective disorder correlations are thus short-range with
a correlation length of the order of the interface width w
(see also Appendix D). The Fourier transform of the corre-
lator (25), defined as )̂(q) =

∫ ∞
−∞ du e−iqu)(u), is given by

)̂(q) = Dg2(q,w), where D = 2α3γ
9δ2 and

g(q,w) = π

8w
(wq)2(w2q2 + 4) sinh−1

(πwq
2

)
. (27)

A pinning force with correlations given by Eq. (24), for
fixed y and continuous u, may be generated by computing

Fp(u, y) = ε
√

D
LT

∑M−1
n=0 eiqnug(qn,w)zn, where qn = 2π

Lx
n and

zn are complex Hermitian random numbers taken from a
Gaussian distributions with zero mean and unit variance, with
z0 = 0. Here Lx = Mδl is the transverse length of the system.
In Fig. 4 we show the computed correlations of pinning forces
generated with this method, for M = 104, δl = 0.1, D = 1,
ε = 1 [51].
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FIG. 3. Temperature dependence of the roughness B(r, T ) for a 2D Ginzburg-Landau system (bottom figures) and for an equivalent 1D
Edwards-Wilkinson system (top figures), obtained for ten realizations (left figures) and for the average over ten realizations of simulations
which evolved during a time t = 103 at temperatures T = 0.05, 0.07, 0.1, 0.15, 0.2, 0.3 (indicated by different colors), starting from a
completely flat configuration. The analytical predictions of the evolution in time of B(r, T ) [Eq. (19)] for an equivalent one-dimensional
interface is shown on dashed colored lines for different temperatures. The final interfaces obtained for one realization are also shown for both
models at different temperatures. A portion of the Ginzburg-Landau system is also shown at T = 0.05 and T = 0.3, along with the detected
interface, shown in black.

height of the double-well potential V (ϕ) of (2) as

Vζ (ϕ(r)) = V (ϕ(r))[1 + εζ (r)]. (20)

Here ζ (r) is a random number at position r taken from a
Gaussian distribution with zero mean and unit variance whose
correlations satisfy ζ (ri )ζ (r j ) = δ2(ri − r j ), where ri, j are
the relative distance between the simulation cells i and j, and
we recall that · · · denotes the average over different disorder
realizations.

When using the ansatz ϕ(x, y, t ) = ϕ∗(x − u(y, t )), the
Langevin equation describing the evolution of the order pa-
rameter now becomes, instead of Eq. (9),

−ηϕ∗′∂t u =γ
(
ϕ∗′′ + ϕ∗′′(∂yu)2 − ϕ∗′∂2

y u
)

(21)

− V ′(ϕ∗) − εζ (x, y)V ′(ϕ∗) + ξ (x, y, t ).

Following the procedure of Sec. II, i.e., by multiplying by
−ϕ∗′, using the soliton equation (6) γ ϕ∗′′ = V ′(ϕ∗), and inte-
grating x over the whole space, we find an effective Langevin
equation for the displacement field u(y, t )

η̃∂t u = c∂2
y u + Fp[u(y, t ), y] + F + ξ̃ (y, t ). (22)

Compared to Eq. (15), we have now the extra term

Fp(u, y) = εγ

∫ ∞

−∞
dx ζ (x + u, y)ϕ∗′′(x)ϕ∗′(x), (23)

which represents a quenched pinning force acting on the inter-
face. As a linear combination of a Gaussian field, the random
pinning force Fp is again Gaussian. Its average is zero and its
correlations are given by

Fp(u1, y1)Fp(u2, y2) = ε2δ(y1 − y2))(u2 − u1), (24)

where the correlator along the x direction is defined as

)(u) = γ 2
∫ ∞
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dx (ϕ∗′ϕ∗′′)(x)(ϕ∗′ϕ∗′′)(x − u). (25)

Using the explicit shape (7) of the profile ϕ∗(x), one ob-
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The effective disorder correlations are thus short-range with
a correlation length of the order of the interface width w
(see also Appendix D). The Fourier transform of the corre-
lator (25), defined as )̂(q) =

∫ ∞
−∞ du e−iqu)(u), is given by

)̂(q) = Dg2(q,w), where D = 2α3γ
9δ2 and

g(q,w) = π

8w
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A pinning force with correlations given by Eq. (24), for
fixed y and continuous u, may be generated by computing

Fp(u, y) = ε
√
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∑M−1
n=0 eiqnug(qn,w)zn, where qn = 2π

Lx
n and

zn are complex Hermitian random numbers taken from a
Gaussian distributions with zero mean and unit variance, with
z0 = 0. Here Lx = Mδl is the transverse length of the system.
In Fig. 4 we show the computed correlations of pinning forces
generated with this method, for M = 104, δl = 0.1, D = 1,
ε = 1 [51].
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Let's allow for fluctuations of the barrier height in the local double-well potentials [with RB disorder]



guments did not address what happens after the thermally
activated jump of the optimal nucleus. Although the velocity
is dominated by the time spent to thermally jump over the
barriers, our equations show that the small f behavior con-
sists in fact of two different regimes. Up to a size RT motion
can only occur through thermal activation over barriers. This
is the regime described by the phenomenological approach to
the creep. The optimal nucleus of the scaling estimate is
given directly by the RG derivation as RT!(1/f )1/(2!"eq).
Remarkably, another interesting regime exists above this
length scale #see Fig. 9$. It emerges directly from our RG
equations and can be given the following simple physical
interpretation. In some regions of the system, bundles of size
RT depin due to thermal activation. These small events then
trigger much larger ones, and the motion above RT proceeds
in a deterministic way, much as the T"0 depinning. In par-
ticular, once the initial bundle depins it triggers an avalanche
up to a size RV which is given by RV /RT
!(Uc /T)%/&(RT /Rc)'%/& where ' , & , and % are the energy,
depinning, and correlation length exponents, respectively.
The present study also raises several interesting questions

which deserve further investigation; some of them rely on
being able to obtain a more accurate solution of our flow
equations. We have shown explicitly how to recover from
our equations the conventional depinning law #and the scal-
ing creep exponents$. It rested on a mathematical property,
likely to hold, but not yet rigorously established, of the so-
lution for the flow of the correlator of the disorder. Such
behavior should be checked in detail. The equations being
quite complicated, a numerical solution, albeit delicate,
seems to be appropriate. If the constraint #5.2$ on the flow
defined in Sec. V B were found to be violated, then the con-
ventional picture of the depinning would very likely fail, as
we have analyzed in detail. A similar question arises con-
cerning the flow of the friction ( as discussed in Sec. VI C.

If the solution of the flow is found to depend on the precise
behavior at the Larkin length Rc , it is likely that even uni-
versality could be questioned. These issues are a priori less
important for the first, thermally activated, part of the creep
regime, but because of the existence of a second, depinning-
like regime, they would also have consequences for creep.
Again, these questions depend on the precise form of the
flow and can be answered unambiguously by a detailed
enough analysis of our equations. It would also be of great
interest to develop a more detailed physical picture of the
crossover between thermally activated and depinninglike
motion since we found that both occur within the creep phe-
nomenon.
Several applications and extensions of our work can be

envisioned. First, extensions to many-dimensional displace-
ment field #of dimension N#1), given in Appendix F, would
be interesting to study within the methods used here. One
could check whether the approximation used in Ref. 53
yields the correct result for the N#1 depinning. Second, the
effect of additional KPZ nonlinearities could be investigated.
In particular one could check the usual argument which
yields that KPZ terms are unimportant for the depinning31
since their coupling constant is proportionnal to the #small$
velocity. Also, extensions to other types of disorder, such as
correlated disorder,54 are possible. Finally, it should allow
one to describe in a systematic way the thermal rounding of
the depinning, i.e., the study of the v-f characteristics for f
close to the threshold and small T. If one assumes that one
can simply carry naive perturbation theory in T around the
T"0 solution of the RG flow near f c #i.e., only keeping the
contribution beyond lV), one is led in Eq. #5.13$ to an addi-
tional term proportional to T/v2, which readily yields the
value for the thermal rounding exponent )"1$2& proposed
in Ref. 49 #i.e., a scaling form near f " f c and small T for the
velocity v!T&/)*+( f ! f c)/T1/),). Although this exponent
seems to be consistent with starting values -%T , its validity
could be further checked by solving our RG flow equations
at small T.
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APPENDIX A: NOTATIONS

Here are some notations and conventions and diagram-
matics we use in the text. The surface of the unit sphere in D
dimensions divided by (2.)D is denoted by SD
"2(4.)!D/2//(D/2). The thermal average of any observ-
able A is 0A1, the disorder average is A , and the average with
the dynamical action S+u , û, is denoted by 0A1S"0A1 . The
Fourier transform of a function hrt of (r ,t) is hq2
"3 rte!iq•r$i2thrt where 3 rt43dr dt , and the inversion
reads hrt"3q2eiq•r!i2thq ,2 , where 3q43+dDq/(2.)D, ,
3243(d2/2.). The Fourier transform of the correlator
5(u) is 56"3du e!i6•u5(u) in general or 56
"30

adu e!i6u5(u) in the periodic case. One has thus 5(u)
"36ei6•u56 , where 3643(d6/2.) or (1/a)76 in the peri-
odic case. Note that 56 is a real and even function of 6 .
The graphs are made of the following units #see Fig. 10$:

FIG. 9. Schematic picture of the creep process emerging from
the present study: while thermally activated motion occurs between
scales Rc #Larkin length$ and RT #thermal nucleus size$, depinning-
like motion occurs up to the avalanche size RV .
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Quasistatic ‘creep’ regime - Standard scaling argument

Focus on low temperature     / small force     / large system size    : creep prediction?T f L

T. Nattermann, Phys. Rev. Lett. 64, 2454 (1990)
L. B. Ioffe & V. M. Vinokur, J. Phys. C 20, 6149 (1987)Scaling argument initially presented in

Quasistatic assumption: in order to move a segment of length L 
of the interface, we can estimate the energy barrier to cross 
from the equilibrium free energy.

V (x, z)

L
Typical transverse displacement deduced 
from the roughness at equilibrium: u(L) ⇠ L⇣

Elastic (free-)energy associated to this displacement: Eel(L) ⇠ Ld · cu(L)
2

L2
⇠ Ld�2+2⇣

Under an external force, corresponding (free-)energy: Ef (L) ⇠ fLdu(L) ⇠ fLd+⇣

Minimum size L for which it is worth to overcome a barrier, thus depends on the force:

Eel(Lopt) = Ef (Lopt) ,, Eel(Lopt(f)) ⇠ f�µLopt(f) ⇠ f�(2�⇣)

Mean steady-state velocity controlled by the typical ‘largest barrier’, which controls the 
mean first passage time (MFPT). Under an Arrhenius assumption:

vT (F ) ⇠ e�
1
T Eel(Lopt(F )) ⇠ e�

Uc
T (Fc

F )µ µ =
d� 2 + 2⇣

2� ⇣

(⇣=2/3)
=

1

4

P. Chauve, T. Giamarchi, P. Le Doussal, Phys. Rev. B 62, 6241 (2000) [very nice intro as well!]

E. Ferrero, L. Foini, T. Giamarchi, A. B. Kolton, A. Rosso, Annu. Rev. Cond. Math. Phys. 12, 111 (2021) [recent review]



New numerical protocol, allowing to reach much smaller forces than before (⇒ ‘creep’!)

Avalanche statistics & spatio-temporal patterns, from ‘creep’ to ‘depinning’

Possible to test the assumptions used in standard scaling arguments!

In particular: broad distribution of energy barriers, with force-dependent cutoff being the ‘bottleneck’ 
governing the mean velocity in the steady state (hence the ‘creep’ formula)

(with roughness exponent    )⇣

E. Ferrero, L. Foini, T. Giamarchi, A. B. Kolton, & A. Rosso, Phys. Rev. Lett. 118, 147208 (2017): "Spatio-temporal 
patterns in ultra-slow domain wall creep dynamics", cf. Figs. 1&3.

Quasistatic ‘creep’ regime — Numerical test for the assumptions for scaling
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Quasistatic ‘creep’ regime — Regime of validity of the creep prediction
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1D elastic interface in a 2D disordered energy landscape
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Quasistatic ‘creep’ regime - Model reduction?

Focus on low temperature     / small force     / large system size    : creep prediction?T f L

1D interface, short-range elasticity 
(elastic limit), random-bond disordervT (F ) ⇠ e�

Uc
T (Fc

F )µ µ =
d� 2 + 2⇣

2� ⇣

(⇣=2/3)
=
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E. Agoritsas, R. García-García, V. Lecomte, L. Truskinovsky, & D. Vandembroucq, J. Stat. Phys. 164, 1394 (2016).

2 DOFs: center of mass 
& elasticity?

?



1D elastic interface in a 2D disordered energy landscape

Effective 2 DOFs model allows to remove arbitrariness in 
scaling arguments in 1D picture

Use refined scaling properties of the effective quasistatic 
disorder free-energy F̄ f

V (tf , y)

Why revisiting scaling arguments on 
effective 2 DOFs model?

Saddle-point argument at vanishing force            for the 
creep regime 

(f ! 0)

Validity range of assumptions / creep prediction:
• Finite system size at vanishing force (dimensional crossover)?
• Intermediate regime at larger forces?
• Low-temperature dependence?

Explicit implementation of the ‘quasistatic’ assumption in the 
language of the tilted directed polymer

E. Agoritsas, R. García-García, et al., J. Stat. Phys. 164, 1394 (2016).

Quasistatic ‘creep’ regime - Model reduction?

Focus on low temperature     / small force     / large system size    : creep prediction?T f L

1D interface, short-range elasticity 
(elastic limit), random-bond disordervT (F ) ⇠ e�
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Quasistatic ‘creep’ regime — Effective model with two degrees of freedom

Effective dynamics of a ‘particle’ of coordinates given by the 
extremities of the interface segment             :(yi, yf )

Thermal noise:

Quenched disorder:

Overdamped Langevin dynamics of the full interface:

Decomposition of the quasistatic DP free-energy:

Elasticity Driving force Effective disorder

Use known scalings of the static disorder free-energy (from KPZ!)
Estimation of mean steady-velocity through the mean first passage time (MFPT)

E. Agoritsas, R. García-García, V. Lecomte, L. Truskinovsky, & D. Vandembroucq, J. Stat. Phys. 164, 1394 (2016).
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Allows for the Arrhenius MFPT expression, based on 
the instanton description, as long as T ⌧ Uc(fc/f)

1/4
Low temperature     :T

Tc = (⇠cD)1/3
Low-temperature Larkin length Lc

(T⌧Tc)⇠ T 5
c

cD2
⇠ ⇠5/3

At higher    :T Crossover of the Larkin length: Lc
(T�Tc)⇠ T 5

cD2

Contributions fluctuations around instanton & other transition paths

0 ffL fmax

Linear response 
(TAFF)

Creep Corrections to creep

0 L tfLc Lopt(f)

KPZ scalings - Creep

Large system size     :L Possible to have                                         so that MFPT expression 
dominated by Brownian scaling, allowing for rescaling free-energy 

0 < Lc < Lopt(f) < L
(f�1/4)

Small force    :f Small velocity ⇒ quasistatic description with static free-energy & tilt

Rescaling & saddle-point argument             ⇒ f ! 0 Lopt(f) ⇠ f�3/4

Backward transitions over largest barriers can safely be neglected

Quasistatic ‘creep’ regime — Summary of the assumptions & their implications

E. Agoritsas, R. García-García, V. Lecomte, L. Truskinovsky, & D. Vandembroucq, J. Stat. Phys. 164, 1394 (2016).



[TECHNICAL]  Mean first passage time (MFPT) &  mean steady-state velocity

KPZ roughness 
scaling

Arrhenius MFPT: 
thermally activated

Explicitly 
quasistatics

L � Lc

E. Agoritsas, R. García-García, V. Lecomte, L. Truskinovsky, & D. Vandembroucq, J. Stat. Phys. 164, 1394 (2016).



KPZ roughness 
scaling

Creep form of the mean steady-state velocity:            saddle point with KPZ scalings f ! 0

1/⌧̄1(f)

E. Agoritsas, R. García-García, V. Lecomte, L. Truskinovsky, & D. Vandembroucq, J. Stat. Phys. 164, 1394 (2016).

[TECHNICAL]  Mean first passage time (MFPT) &  mean steady-state velocity



versus
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Thermal rounding
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Nature of the moving phase?
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@Large velocity: 'fast flow' regime

P. Chauve, T. Giamarchi, P. Le Doussal, Phys. Rev. B 62, 6241 (2000) [cf. Appendices B-C]
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Summary (beyond the specific KPZ connections)

 Focus on two features: roughness & velocity-force characteristics

 & other features accessible through DES modelling such as

 Velocity fluctuations in the steady-state regime
 Roughness prefactors                     , crossover lengthscales, other regimes, …
 Whole distribution of geometrical fluctuations                  , beyond

B(r) ⇠ r2⇣

P(�u(r)) B(r) = h�u(r)2i

 A-C dynamics
 Avalanches statistics & spatio-temporal patterns

 Generic framework of DES systems with HDES = Hel +Hdis

 ⇒ Study of disorder-conditioned features of interfaces (statics & dynamics)

DES minimal 
modelling

Ideal experimental 
realisation

1D interface, with short range elasticity 
& random-bond disorder

Ferromagnetic DWs 
in ultrathin films (e.g. Pt/Co/Pt)

(or quenched Edwards-
Wilkinson dynamics)

Investigated via
 scaling analysis (standard Flory vs our approach)

 Gaussian Variational Method (GVM) computation
 special mappings when available (such as KPZ for the static fluctuations)

 numerics on qEW (also quenched KPZ!)

 functional RG (perturbative in 4-d, non-perturbative)
 toy models / mean-field approximations



E. Agoritsas, V. Lecomte & T. Giamarchi, Phys. Rev. E 87, 042406 & 062405 (2013).

Numerics: asymptotic 2-pt correlator of disorder free-energy

 Amplitude of the correlator / Maximum value:
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 Shape of the asymptotic correlator:
<latexit sha1_base64="Q2neUmyqydh0Anil88qor1zvWUY="></latexit>

R̄sat(y) ⇡ R̄(1, y) =
1

2
@2
yC̄(1, y)

Definition of the interpolating parameter:

eD1(T, ⇠) = f(T, ⇠)
cD

T
GVM prediction of a smooth crossover:

f6 / (T/Tc)
6(1� f) Tc(⇠) = (⇠cD)1/3&

Connexion with the asymptotic roughness amplitude:

A(c,D,T,⇠) ⇠ ( eD1/c2)2/3
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 Roughness regimes & characteristic crossover scales
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versus

B(t) = Bth(t) +Bdis(t)in the total roughness:

Powerlaw?
(⇣num ⇡ 2� 2.5 ?)

RANDOM MANIFOLDTHERMAL

‘time’ tLc(T = 0)0

B(t) Bth(t) =
Tt

c
BRM(t) ⇠ ( eD1/c2)

2
3 t

4
3

SHORT 'TIMES' SATURATION at |y| . ⇠

‘time’ tLc(T = 0)0 tsat

THERMAL (T � Tc)

MODIFIED LARKIN (T ⌧ Tc)

Lc ⇠
T 5

cD2
/f5

T %

ROUGHNESS

DISORDER
FREE-ENERGY

P̄
⇥
F̄V , t

⇤
Non-Gaussian features: @tR̄(t, y), @tR̄3(t, y), ...

Non-Gaussian steady-state: R̄(1, y) = eD1 · R⇠(y)

Feedback of the
KPZ nonlinearity
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Introduction to 
DES

Statics

Dynamics
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extended review
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"Canonical review"

About ~50 years of literature in theory/experiments/numerics! ⇒ See reviews with refs therein


