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Abstract

These informal notes present some mathematical tools useful to compute the static roughness function,
by means of Gaussian integrals, the replica trick, and the Gaussian Variational Method (GVM) approxima-
tion scheme.

They complement the lecture notes introducing the theoretical framework of the disordered elastic sys-
tems (DES), starting from their generic recipe, and then moving to a crash-course on both their statics and
dynamics. This minimal description of physical interfaces allows one to focus on the key role of disorder
for such emergent structures: how spatial heterogeneities can pin them, and how thermal fluctuations or an
increasing external field allow the system to overcome this pinning.
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In these notes we present the three mathematical techniques needed in the computations: the Gaussian
integrals, the replica trick, and the variational method. Each of these techniques will first be introduced,
and then immediately applied to the Larkin model and to the complete Hamiltonian:

• the Gaussian integrals will be illustrated with a direct computation of
〈
u∗
quq

〉
of the Larkin model

(section 1.5);

• the replica trick will be applied to H and HL in order to average first over disorder and obtain their
corresponding effective Hamiltonians H̃ and H̃L which couple n replicas of the interface (sections
2.4 and 2.5);

• the variational method is finally used to obtain an equation for the optimal quadratic replicated Hamil-
tonianH0 to approximate H̃, which cannot be exactly solved analytically (sections 3.3 and 3.4).

1 Functional and Gaussian integrals
In the computation of statistical averages of observables, we are confronted with formal discrete sums in-
volving the exponential of −βH. In a continuous representation of the system, these discrete sums are
promoted to functional integrals. If the Hamiltonian happens to be quadratic in its order parameter, we
are in an ideal case for the analytical computation of those averages, since we can use the identities of
the Gaussian integrals, which include complex and matricial generalizations of the well-known identity∫
R du · e−u2

=
√
π. Note that most of the following material comes from [1].

1.1 Discrete and continuous representations in the Fourier space
The notation

∫
Du, inherited from the formal sum over all the configurations

∑
{s}, is defined via a discrete

representation in real space of the system: ∫
Du ≡

∏
i

∫
R
dui (1)

However, it is more convenient to work in the Fourier space, so we shall translate it into a discrete sum over
all the Fourier modes uq ∈ C, with the addition of the Jacobian J̃ of this transformation:∏

i

∫
R

dui

π1/2
≡ J̃

∑
q>0

∫ ∫
R2

dℜ(uq) dℑ(uq)

π
(2)

Since the Fourier transforms of the Hamiltonian and other observables are functions of
{
uq, u

∗
q

}
, we intro-

duce the symbolic notation: ∫ ∫
dℜ(uq) dℑ(uq)

π
≡
∫ ∫

du∗
qduq

2πi
(3)

where u and u∗ are treated as independent variables in the integration, allowing unitary changes of variables
(u, u∗) → (ũ, ũ∗) such that ũ, ũ∗ are not complex conjugates anymore. Whenever the notation * may be
ambiguous in presence of other variables, the complex conjugates of those will be denoted otherwise (e.g.
h̄).

Just for the record, the factors π1/2 and π in (2) are normalization factors, since{ ∫
R du · e−u2

= π1/2∫ ∫
R2 dℜ(u) dℑ(u)e−|u|2 = π

and the factor 2i in the denominator of (3) comes from the Jacobian of the transformation (ℜ(u),ℑ(u))→
(u, u∗):(

ℜ(u)
ℑ(u)

)
=

(
u+u∗

2
u−u∗

2i

)
=

(
1
2

1
2

1
2i − 1

2i

)(
u
u∗

)
⇒ Jacobian =

∣∣∣∣∣∣∣∣ 1
2

1
2

1
2i − 1

2i

∣∣∣∣∣∣∣∣ = 1

2i
(4)

We summarize all this with: ∫
Du ≡

∏
i

∫
dui ≡ J

∏
q>0

∫ ∫
du∗

qduq (5)
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and consequently, for n replicas of the system:∫
Du1(· · · )Dun ≡

n∏
a=1

∏
i

∫
duai ≡ J

∏
q>0

∫ ∫
du∗

1(q)du1(q)(· · · )du∗
n(q)dun(q) (6)

Since we switch from a continuous to a discrete representation of the system (and inversely) in the
computation of functional integrals, which were first introduced in real space, we recall the relation used for
their counterparts in the Fourier space:

1

2Ω

∑
q

≡ 1

2

∫
ddq

(2π)d
(7)

where Ω denotes generically the volume of the system in the discrete Fourier space. The factor 1/2 antici-
pates the symmetry −q ↔ q present in quadratic observables (as Hamiltonians or correlation functions, e.g.
the roughness) which are functions of the real order parameters u(z), in which case we have:

1

2Ω

∑
q

=
1

Ω

∑
q>0

(8)

This should typically not be forgotten when one has to take the partial derivative ∂q , in order to avoid
misplaced factors 2...

1.2 Formulary of Gaussian integrals
The Gaussian integrals can all be derived from:∫

R
du · e−u2

=
√
π (9)

using changes of variables in R: ∫
R
du · e−au2

=

√
π

a
(a > 0) (10)

and then in C with integrations by parts using the transformations:∫
C

du∗du

2πi

[u=x+iy]←→
∫ ∫

R2

dx dy

π

[u=ρ·eiθ]←→ 1

π

∫ 2π

0

dθ

∫ ∞

0

dρ · ρ (11)

We thus have for a ∈ R the following identities:∫ ∫
du∗du
2πi · e−au∗u =

1

a
(12)∫ ∫

du∗du
2πi · u · e−au∗u = 0 (13)∫ ∫

du∗du
2πi · u∗ · e−au∗u = 0 (14)∫ ∫

du∗du
2πi · u∗u · e−au∗u =

1

a

∫ ∫
du∗du

2πi
· e−au∗u (15)

where the symbolic notation
∫ ∫

du∗
qduq conveniently allows to consider u, u∗ as independent variables.

Integrations of odd functions of {u, u∗} (e.g. u, u∗, u2 · u∗, (u∗)2 · u, etc.) give zero, as showed by (13)
and (14). Integrations of even functions of {u, u∗} (e.g. u∗u, u2 · (u∗)4, etc.) bring factors 1/a in front of
(12) via an integration by parts, as shown by (15).

For M and H n×n real symmetric and positive definite matrices (e.g. Hamiltonians with an appropriate
definition of the zero of energy), the spectral theorem guarantees the existence of an orthonormal vectorial
basis in which M and H are diagonal. Using this basis, we can obtain from (10) the following matricial
Gaussian integral: ∫

du1(· · · )dun · e−
∑

ij uiMiuj =
πn/2

(detM)1/2
(16)

and we can extract the coefficients of the inverse matrix of M via:∫
du1(· · · )dun · ukul · e−

1
2

∑
ij uiMijuj∫

du1(· · · )dun · e−
1
2

∑
ij uiMijuj

=
(
M−1

)
kl

(17)
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In presence of quadratic and linear terms in the argument of the exponentials, we can complete real or
complex ‘matricial squares’ using:∫

du1(· · · )dun

(2π)n/2
· e− 1

2

∑
ij uiMijuj+

∑
i biui =

e
1
2

∑
ij bi(M

−1)bj

(detM)1/2
(18)(∏

i

∫ ∫
du∗

i dui

2πi

)
e−

∑
ij u∗

i Hijuj+
∑

i(h
∗
i ui+hiu

∗
i ) =

e
∑

ij h∗
i (H

−1)ijhj

detH
(19)

The explicit procedure which gives these relations is described in more details in the section 1.4.

1.3 Averages with quadratic Hamiltonians
If a HamiltonianH [u] is quadratic in u and diagonal in its Fourier modes q, i.e. of the generic form (in both
its representations):

H [u] =
1

2Ω

∑
q̃

u∗
q̃Aq̃uq̃ =

1

2

∫
ddq̃

(2π)d
u∗
q̃Aq̃uq̃ (20)

with A−q̃ = Aq̃ , any average of correlators in Fourier space can be computed using Gaussian identities. The
link between those and their functional versions is given thereafter: In a discrete representation:

⟨u∗(q1)u(q2)⟩ ≡
∫
Du · u∗(q1)u(q2) · exp

[
− β

2Ω

∑
q̃ u

∗
q̃Aq̃uq̃

]
∫
Du · exp

[
− β

2Ω

∑
q̃ u

∗
q̃Aq̃uq̃

] =
Ωβ−1

A(q1)
· δq1q2 (21)

and in its continuous counterpart:

⟨u∗(q1)u(q2)⟩ ≡
∫
Du · u∗(q1)u(q2) · exp

[
−β

2

∫
ddq̃

(2π)d
· u∗

q̃Aq̃uq̃

]
∫
Du · exp

[
−β

2

∫
ddq̃

(2π)d
· u∗

q̃Aq̃uq̃

] =
(2π)dβ−1

A(q1)
· δ (q1 − q2) (22)

A quadratic replicated Hamiltonian, which describes a set of n replicas of the system, also diagonal in
its Fourier modes q, is of the generic form:

H [u⃗] =
1

2Ω

∑
q̃

∑
a′b′

u∗
a′(q̃)G−1

a′b′(q̃)ub′(q̃) =
1

2

∫
ddq̃

(2π)d

∑
a′b′

u∗
a′(q̃)G−1

a′b′(q̃)ub′(q̃) (23)

and it follows finally, in a continuous representation of the Fourier modes q:

⟨u∗
a(q1)ub(q2)⟩ ≡

∫
Du1(· · · )Dun · u∗

a(q1)ub(q2) · exp
[
−β

2

∫
ddq̃

(2π)d
·∑a′b′ u

∗
a′(q̃)G

−1
a′b′(q̃)ub′(q̃)

]
∫
Du1(· · · )Dun · exp

[
−β

2

∫
ddq̃

(2π)d
·∑a′b′ u

∗
a′(q̃)G

−1
a′b′(q̃)ub′(q̃)

]
= (2π)d · β−1 ·Gab(q1) · δ (q1 − q2)

(24)

These identities are used throughout the computations of thermal and disorder averages, and when they do
not apply, even under a reformulation of the considered averages, we usually cannot pursue exact computa-
tions. Note that if H is diagonal in q, we have δ-functions δ (q1 − q2), even for replicas, whereas different
indices a, b for the replicas are authorised and actually allow to extract the coefficients Gab(q).

1.4 To complete a ‘matricial square’
To compute for example thermal averages, we start from a Hamiltonian whose elastic part is quadratic (de-
scribed by G) and whose disorder part is linear in u, u∗. By completing this ‘matricial square’, we recover
a quadratic part through a unitary redefinition of (u, u∗) 7→ (ũ, ũ∗), with an additional term which does
not depend on the displacements u, u∗ and can thus be taken outside the thermal average. This last term is
actually all that will survive to the thermal average.

If G is a Hermitian matrix, G† = ḠT = G and we have:

(u+Gh1)
†G−1(u+Gh2) = u∗TG−1u+ h̄T

1 G
†G−1︸ ︷︷ ︸u+ u∗T G−1G︸ ︷︷ ︸h2 + h̄T

1 G
†G−1︸ ︷︷ ︸Gh2

[G†=G]
= u∗TG−1u+ h̄T

1u+ u∗Th2 + h̄T
1Gh2 (25)
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If G is real and symmetric, it is Hermitian and thus:

(u+Gh1)
† = (u∗ +Gh̄1)

T =⇒ u∗TG−1u+ h̄T
1u+ u∗Th2 = (u∗ +Gh̄1)

TG−1(u+Gh2)− h̄T
1Gh2

and this last identity becomes in terms of components:∑
a′b′

(
u∗
a′G−1

a′b′ub′ + h̄1a′δa′b′ub′ + u∗
a′δa′b′h2b′

)
=
(
u∗ +Gh̄1

)T
G−1(u+Gh2)−

∑
a′b′

h̄1a′Ga′b′h2b′

(26)

1.5 Direct computation of
〈
u∗
quq

〉
in the Larkin model

To illustrate the use of Gaussian integrals in averages with quadratic Hamiltonians, we compute in this
section the structure factor

〈
u∗
quq

〉
of the Larkin model, for a generic dimension d. Note that the following

computations are widely inspired from [1].
The Larkin Hamiltonian, put in its quadratic form, can actually be rewritten as:

HL [u, f ] = Hel [ũ]−
1

2

∫
(Dz)q

ddq

(2π)d
f∗
q fq

cq2
(27)

via the following redefinition of the displacement field:

ũq = uq +
fq
cq2

(28)

The second term in the Hamiltonian does not depend on the displacements u or ũ, so at a given disorder f
it is a constant which disappears via the thermal average.

We start by computing the structure factor at fixed disorder f , using the change of variable (u, u∗) →
(ũ, ũ∗) and the linearity of the thermal average:〈

u∗
quq

〉
f

(28)
=

〈(
ũ∗
q −

f∗
q

cq2

)(
ũq −

fq
cq2

)〉
f

=
〈
ũ∗
q ũq

〉
f︸ ︷︷ ︸

⟨u∗
quq⟩f≡0

+

〈
f∗
q fq

(cq2)2

〉
f︸ ︷︷ ︸

⟨cste⟩=cste

−
〈
f∗
q uq + fqu

∗
q

〉
f︸ ︷︷ ︸

=0: lin. in u,u∗

=
〈
u∗
quq

〉
f≡0

+
f∗
q fq

(cq2)2

(29)

Then we compute the average over disorder, using again its linearity:

〈
u∗
quq

〉
=
〈
u∗
quq

〉
f≡0︸ ︷︷ ︸

cste=cste

+
f∗
q fq

(cq2)2
=
〈
u∗
quq

〉
f≡0︸ ︷︷ ︸

purely thermal

+
f∗
q fq

(cq2)2︸ ︷︷ ︸
purely disorder

(30)

The structure factor
〈
u∗
quq

〉
of the Larkin model splits in two uncoupled contributions: the first one is

purely thermal, since it is the genuine structure factor of the case without disorder (f ≡ 0); the second one
depends exclusively on the disorder. We consider both those terms with the definitions of their respective
averages (note the presence of the volume term (2π)d, not to be forgotten), and use (22):

〈
u∗
quq

〉
f≡0

=

∫
Du · u∗

quq · e
− β

2

∫ ddq̃

(2π)d
·cq̃2·u∗

q̃uq̃∫
Du · e−

β
2

∫ ddq̃

(2π)d
·cq̃2·u∗

q̃uq̃

=

(
βcq2

(2π)d

)−1

= (2π)d · T

cq2

f∗
q fq =

∫
Df · f∗

q fq · e
−D−1

2

∫ ddq̃

(2π)d
f∗
q̃ fq̃∫

Df · e−
D−1

2

∫ ddq̃

(2π)d
f∗
q̃ fq̃

=

(
D−1

(2π)d

)−1

= (2π)d ·D

and we finally obtain: 〈
u∗
quq

〉
= (2π)d ·

(
T

cq2
+

D

(cq2)2

)
(31)

The thermal contribution is a propagator in 1/q2 and the disorder contribution is in 1/q4.
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2 The replica theory

To compute analytically the average of an observable O in a quenched disordered system, we have first to
compute its thermal average at fixed disorder, i.e. for a given configuration V of the random potential. The
disorder average shall only be computed afterwards. Indeed, ⟨O⟩V corresponds physically to the expected
value of a measurement of O on a physical sample described by V , whereas ⟨O⟩ is the expected value
for a self-averaging system, or equivalently for an average over a representative set of samples of different
disorder configuration.

Yet we actually never give an explicit form of V , we only impose on it a given statistical distribution, in
this case a Gaussian distribution with a standard deviation D. In the Larkin model, the disorder Hamiltonian
is linear in u(z) and so it is possible to average explicitly over the displacement field u(z), even with the
random variable V , as it is done in the section 1.5. However, forHdis the u(z)-dependence in the exponential
does not allow such an explicit computation. Moreover, for an arbitrary V , the interface is not invariant
through a translation in the z direction; this hinders a description in the Fourier space.

So we would like practically to average first over disorder, in order to recover as soon as possible a
translation invariance on the interface and to get rid of V , keeping only its relevant parameter, namely the
disorder strength D.

The replica theory provides precisely a framework to practically average first over disorder. It has in
particular been used by M. Mézard and G. Parisi in the context of the spin-glass theory, and is exposed in
their review book [2]. In spin glasses, spins organised in a lattice (for example Ising spins) are coupled
via random bonds, of known distribution. The frustration of those randomly coupled spins gives rise to
metastability and glassy properties, similarly to the case of our interface.

In brief, the replica trick aims to account for the effect of disorder on a single system by replacing it with
n replicas of itself, coupled by an effective Hamiltonian of n displacement fields H̃ [u1, . . . , un]. Quoting
[3], those replicas will act ‘as probes exploring the unknown phase space, and sending us important informa-
tion on the structure of states in it’. Indeed, the valleys of metastability in the complicated energy landscape
of a disordered system correspond to clusters of similar configurations. The disorder-averaged couplings of
all the possible configurations of an interface should thus encode, somehow, the universal properties of this
landscape’s structure.

In this section, we start by introducing in ⟨O⟩ n exact copies of the system via its partition function Z, n
being an arbitrary (large) integer. Those replicas will act as probes of the system’s behaviour, but they must
have disappeared at the end of our computations, taking the limit n → 0. But before, they will allow the
definition of an effective ‘replicated’ Hamiltonian H̃ [u1, . . . , un], and of its corresponding thermal average,
obtained after the disorder average.

The definition of the replicas imposes on H̃ the structure of a n×n hierarchical matrix, whose properties
will then briefly be discussed. Indeed, ⟨O⟩ happens to extract the coefficients of the inverse of H̃, i.e. the
coefficients of its Green function (denoted by G in (24)). Inversion formulas for hierarchical matrices are
thus needed, and are actually available directly in the limit n → 0 which interests us. The algebra of such
‘0 × 0’ hierarchical matrices has been given in [4]. Thereafter those inversion formulas will be presented,
respectively for replica-symmetric and full replica-symmetry-breaking (RSB) Hamiltonians. The replica
trick will be applied to the Larkin model, and the inversion of its effective Hamiltonian H̃L presented as an
illustration of a replica-symmetric case.

We will eventually compute explicitly the effective Hamiltonian H̃ [u⃗] of the complete model for d =
m = 1.

As we will see, the replica trick works under cover of exchanges of limits, and in particular of the
analytical continuation from an arbitrary large integer n of replicas to n → 0. Those can rise a lot of
skepticism (and jokes like ‘some consider that the replica theory is a generator of random formulas’), but
actually some results obtained via the replicas can be find also by completely different approaches (the cavity
method, TAP, cf. [2]), and in some cases a rigorous mathematical justification has been given. In addition
to the physical arguments in its favour, this approach thus seems to catch at least some of the physics of the
disorder, and that makes it worth the try.

2.1 Introduction of the replica via the partition function: 1
Z
= limn→0 Z

n−1

Practically, the explicit computation of the disorder average is hindered by the presence of disorder both in
the numerator and in the partition function in the denominator of the thermal average. In order to bypass
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this, we add n exact replicas of the system, using its partition function:

1

Z
= lim

n→0

Zn

Z
= lim

n→0
Zn−1 (32)

which means, for the partition function of the system at equilibrium Z [V ] =
∫
Du · e−βH[u,V ]:

1

Z
= lim

n→0
Zn−1 =

∫
Du2 · e−βH[u2,V ] · (· · · ) ·

∫
Dun · e−βH[un,V ]

=

∫
Du2(· · · )Dun · e−β

∑n
i=2 H[ui,V ] (33)

For the thermal average of an observable O, we can thus formally promote the partition function in the
denominator as a product of replicas in the numerator:

⟨O⟩ ≡ 1

Z

∫
Du · O [u] · e−βH[u,V ] = lim

n→0
Zn−1

∫
Du1 · O [u1] · e−βH[u1,V ]

= lim
n→0

∫
Du1(· · · )Dun · O [u1] · e−β

∑n
i=1 H[ui,V ] (34)

and finally, after the disorder average, we can define an effective Hamiltonian H̃:

⟨O⟩ = lim
n→0

∫
Du1(· · · )Dun · O [u1] · exp

(
−β
∑
i

H [ui, V ]

)
(35)

≡ lim
n→0

∫
Du1(· · · )Dun · O [u1] · exp

(
−βH̃ [u⃗]

)
(36)

The replica trick thus allows to formally replace ⟨O⟩ with a ‘replicated’ thermal average over an effective
Hamiltonian H̃ [u⃗], which a priori couples the replicas. If the disorder Hamiltonian is linear in V , as it is the
case in our model, this effective Hamiltonian can be computed explicitly using Gaussian integrals.

The computation of ⟨O⟩ is thus available through the inversion of H̃ [u⃗] and the obtention of its Green
function. It is exactly possible for the Larkin model, and we obtain indeed the same result as by a direct
computation (31). The programme is the following: we have to inverse H̃ [u⃗] and to apply the limit n→ 0:
welcome into the realm of the 0× 0 hierarchical matrices (!), explored among others by Mézard and Parisi,
and briefly presented thereafter.

2.2 Properties of a hierarchical matrix
The replica trick imposes on the effective Hamiltonian the structure of a n× n hierarchical matrix. Indeed,
a replicated Hamiltonian must be symmetrical in uq and u∗

q , since u∗
q = u−q and the choice to sum over

the Fourier modes q or −q must be irrelevant. Moreover, the choice of the index of the displacement fields
in (34) is completely arbitrary, so each line of a replicated Hamiltonian must be a permutation of the other
lines. By symmetry, each of its column must also be a permutation of the other columns. This constraint
actually shortens the number of permutations to the n sequences of coefficients which respect this symmetry,
even though there is still some freedom in their possible arrangement.

A generic n× n hierarchical matrix Ĝ and its corresponding inverse matrix Ĝ−1, also hierarchical, are
symmetrical and can be written:

Ĝ ≡

 G̃ Ga̸=b

. . .
Ga ̸=b G̃

 ⇐⇒ Ĝ−1 ≡


G̃−1 G−1

a̸=b

. . .
G−1

a ̸=b G̃−1

 (37)

where G̃ = Gaa and G̃−1 = G−1
aa ∀a. The exponent −1 is used exclusively in relation with the inverse

matrix Ĝ−1, and shall not be mistaken with the negative power exponent of a scalar (e.g. G−1
aa ̸= (Gaa)

−1).
The tilde refers to the diagonal elements of the matrix.

Since the different coefficients of a hierarchical matrix are repeated in each line and in each column,
the knowledge of a single line or column is enough to construct the whole matrix. One can thus choose as
reference the sequence in which the coefficients are classified monotonously, and put it in the first line of
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the matrix. This property allows the definition of the connected part of these matrices, i.e. the sum of the
coefficients on any line or column:

Gc =
∑
a

Gab =
∑
b

Gab ⇐⇒ G−1
c =

∑
a

G−1
ab =

∑
b

G−1
ab (38)

Those connected parts actually satisfy Gc ·G−1
c = 1, by definition of an inverse matrix:

Gc ·G−1
c =

(∑
a

Gab

)(∑
b

G−1
ba′

)
=
∑
a

(∑
b

GabG
−1
ba′

)
︸ ︷︷ ︸

δaa′

= 1 ⇐⇒ Gc =
1

G−1
c

(39)

The simplest case of a hierarchical matrix is the replica-symmetric Ansatz, in which all the off-diagonal
coefficients of the matrix are equal:

Ga̸=b = G ∀a, b =⇒ Ĝ =

 G̃ G
. . .

G G̃

 (40)

If the off-diagonal terms count at least two different values {g0, . . . , gk}, we have a replica-symmetry
breaking (RSB) Ansatz. The integer k corresponds to the number of such breakings, but for a full description
of the matrix it must be coupled to the weight of each new coefficient gj , as illustrated by FIG 1.

(a) (b) (c)

(d) (e) (f)

Figure 1: Examples of hierarchical matrices with one symmetry-breaking (k = 1) ; (a)-(c) correspond to the
reference sequence of those matrices, the two colors illustrating the two different values of the coefficients. The
distribution of those values dictates the structure of the whole matrix; the black zones thus occupy respectively
one half (a), one third (b) and one quarter (c) of the reference sequence.

By construction, a n × n hierarchical matrix can have at most k = n symmetry-breaking. But since
n is itself an arbitrary integer in the replica trick, it can as well be taken equal to a power of two n = 2m

with m ∈ N, which allows to completely fragment the matrix, as illustrated in FIG 2. Taking m → ∞,
the monotonous sequence of coefficients on the first line of the matrix is more adequately described by a
monotonous function G(u), depending on a mapping parameter u ∈ [0, 1]:

{g0, . . . , gk} 7−→ G(u) u ∈ [0, 1] (41)

We can thus define a full RSB hierarchical matrix with:

Ĝ =

 G̃ G(u)
. . .

G(u) G̃

 with u ∈ [0, 1] (42)
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(a) Matrix 2× 2, k = 21 − 1 (b) Matrix 4× 4, k = 22 − 1

Figure 2: Examples of hierarchical matrices of n × n blocks, with increasing integer k of replica-symmetry
breaking. Each shade of color from black to cyan corresponds to a different value for the coefficients of the
matrices. See also Fig. 3.

since the first line described by G(u) determines the whole matrix, as illustrated by FIG 3. The full-RSB
Ansatz is actually the most generic description of a hierarchical matrix, since the replica-symmetric and
k-RSB Ansätze can be recovered using step-functions for G(u).

The peculiar symmetries of hierarchical matrices allow to determine generic inversion formulas, once
the first line of the matrix is given, directly in the limit n→ 0. Those formulas are given in the next section,
for the replica-symmetric and the full-RSB cases.

2.3 Inversion formulas of hierarchical matrices in the limit n→ 0

Thereafter the inversion formulas in n → 0 are given for the replica-symmetric and the full-RSB cases. In
the next section the effective Hamiltonian of the Larkin model H̃L and of the complete model H̃ will be
computed and discussed, in relation with the possible obtention of their corresponding Green functions.

From now on, the Hamiltonians will be parametrized by Ĝ−1(q) and their corresponding Green func-
tions by Ĝ(q) as generic hierarchical matrices, as in (23). So the thermal average (36) becomes for the
structure factor (cf. (24)): 〈

u∗
quq

〉
= lim

n→0

〈
u∗
quq

〉
H̃ = (2π)d · T · lim

n→0
G̃(q) (43)

2.3.1 Inversion of a replica symetric Ansatz for n→ 0

For a generic replica-symmetric matrix Ĝ−1, we have

Ĝ−1 =

 G̃−1 G−1

. . .
G−1 G̃−1

 =⇒ Ĝ =

 G̃ G
. . .

G G̃


and in the limit n→ 0

G−1
c ≡ G̃−1 −G−1, Gc ≡ G̃−G

Gc ·G−1
c = 1, G = − G−1

(G−1
c )2

, G̃ = G̃−1−2G−1

(G−1
c )2

(44)

These relations can be obtained either by constructing and using an orthonormal vectorial basis in which
the n×n matrix Ĝ−1 becomes diagonal, and finally make n tend to 0, or by solving explicitly the equations
which define the inverse of the matrix

∑
b GabG

−1
bc = δac directly in the limit n→ 0.
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(a) Blend representation of G(u) u ∈ [0, 1]: each shade of color accounts for a possibly different value of the matrix’s coefficients.

(b) Full RSB hierarchical matrix

Figure 3: Illustration of a full RSB hierarchical matrix using a blend representation (in fact a completely
fragmented 256× 256 block matrix with k = 28 − 1, which goes beyond the resolution of the impression).
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2.3.2 Full Replica Symmetry Breaking (RSB) for n→ 0

The full-RSB inversion formulas are given in [5]. Thereafter they have been adapted to the following
definition of full-RSB hierarchical matrices:

Ĝ−1(q) =

 G−1
c − σ̃ −σ(u)

. . .
−σ(u) G−1

c − σ̃

 =⇒ Ĝ(q) =

 G̃(q) G(q, u)
. . .

G(q, u) G̃(q)


σ(u) being defined as a monotonous function on the dense interval [0, 1], the discrete sums of matricial

operations are replaced by integrals. With the definition:

[σ] (v) ≡ v · σ(v)−
∫ v

0

dw · σ(w) (45)

we thus have:

G(u) =
1

G−1
c

(
1

u
· [σ] (u)

G−1
c + [σ] (u)

+

∫ u

0

dv

v2
[σ] (v)

G−1
c + [σ] (v)

+
σ(0)

G−1
c

)
(46)

G̃ =
1

G−1
c

(
1 +

∫ 1

0

dv

v2
· [σ] (v)

G−1
c + [σ] (v)

+
σ(0)

G−1
c

)
(47)

G̃−G(u) =
1

u
· 1

G−1
c + [σ] (u)

−
∫ 1

u

dv

v2
· 1

G−1
c + [σ] (v)

(48)

G̃−G(u) =
1

G−1
c + [σ] (1)

+

∫ 1

u

dv · σ′(v)(
G−1

c + [σ] (v)
)2 (49)

2.4 Effective Hamiltonian for the Larkin model H̃L

In this section we apply the replica trick to the Larkin HamiltonianHL, in order to obtain its corresponding
effective Hamiltonian H̃L after averaging over disorder. Thereafter we give all the details of this computa-
tion, as a concrete illustration of the replica trick.

We have to compute here:

exp

(
−β
∑
i

HL [ui, f ]

)
= exp

(
−β
∑
i

Hel [ui]

)
· exp

(
−β
∑
i

HL
dis [ui, f ]

)
(50)

Using the definition of the disorder average, the second term requires to complete the following ‘square’
in the argument of the exponential:

− β
∑
i

Hdis [ui, f ]−
D−1

2

∫
ddq

(2π)d
· f∗

q fq

= −β

2

∫
ddq

(2π)d

∑
i

(
fqu

∗
i (q) + f∗

q ui(q)
)
− D−1

2

∫
ddq

(2π)d
· f∗

q fq

= −D−1

2

∫
ddq

(2π)d


(
f∗
q + βD

∑
i

u∗
i (q)

)
︸ ︷︷ ︸

≡f̃∗
q

(
fq + βD

∑
i

ui(q)

)
︸ ︷︷ ︸

≡f̃q

−β2D2

(∑
i

u∗
i (q)

)(∑
i

ui(q)

)
(51)

Since the Jacobian of the transformation fq → f̃q ≡ fq + βD
∑

i ui(q) is equal to one, we have:∫
Df −→

∫
Df̃

and consequently:

exp

(
−β
∑
i

HL [ui, f ]

)
= e

β2

2

∫ ddq

(2π)d
(
∑

i u
∗
i (q))(

∑
i ui(q)) · 1

C

∫
Df̃ · e−

D̃−1

2

∫ ddq

(2π)d
·f̃∗

q f̃q︸ ︷︷ ︸
=1

(52)
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Combining (50) and (52), we obtain the effective Hamiltonian for the Larkin model:

H̃L [u⃗] =
1

2

∫
ddq

(2π)d
· u⃗∗T

q

cq2In − βD

 1 − 1
| ⧹ |
1 − 1

 u⃗q (53)

where In is the n× n identity matrix.

This Hamiltonian is clearly replica-symmetric, and using the inversion formulas (44): G̃−1 = cq2 − βD
G−1 = −βD
G−1

c = cq2

(44)
=⇒


Gc = 1

cq2

G = βD
(cq2)2

G̃ = 1
cq2 + βD

(cq2)2

(54)

which gives eventually, using (43), the same result as obtained previously by a direct computation of the
averages (cf. (31)): 〈

u∗
quq

〉
= (2π)d ·

(
T

cq2
+

D

(cq2)2

)
(55)

We may briefly comment the structure of (53):

• If there is no disorder, D = 0 and H̃L is simply a replicated elastic Hamiltonian, in which the replicas
are uncoupled.

• The factor D is inherited by the linearity ofHL
dis in V .

• The matrix of 1 describes an equivalent coupling between the replicas. This can be interpreted as
following: in a perturbative approach, the averaged effect of disorder exhibits an equivalence between
all the possible configurations u of a weakly distorted interface, even in the most disparate pair of
configurations. This does not seem to account for the presence of metastability in the system.

• The disorder contribution does not depend on q, so the equivalence between the replicas in Fourier
space appears also in real space.

2.5 Effective Hamiltonian for the complete model H̃
In this section we finally apply the replica trick to the Hamiltonian H of the complete DES model. Af-
ter averaging over disorder, it actually reduces to the following effective Hamiltonian which couples the
replicas:

H̃ [u⃗] =
1

2

∫
dq

2π
· cq2

∑
a

u∗
a(q)ua(q)−

βD

2

∫
R

dλ

2π
· e−λ2ξ2

∫
dz ·

∑
ab

eiλ(ua(z)−ub(z)) (56)

Because of the term
∑

ab

∫
dz · eiλ(ua(z)−ub(z)), we do not know how to reformulate H̃ in a quadratic

form in Fourier space, such as (23). Consequently we have not access to the diagonal term G̃(q) of its Green
function, and we cannot compute thermal averages ⟨O⟩H̃ using (43). In particular, we cannot compute the
structure factor

〈
u∗
quq

〉
and its corresponding roughness B(r).

In the next section, we will thus try a variational method to construct the best replicated quadratic
Hamiltonian H0, whose Green function will be used to approximate H̃ in the computation of the average
(43): 〈

u∗
quq

〉
≈ lim

n→0

〈
u∗
quq

〉
0
= (2π)d · T · lim

n→0
G̃(q) (57)

The alternative of a perturbative approach leads to the Larkin model, which is indeed exactly solvable,
but such a perturbative expansion is incorrect in d = 1. However, even for higher dimensions, it is valid
only in the restricted regime of small distorsions of the interface, whereas a variational approximation shall
not be limited to such a regime.

Thereafter we briefly comment the structure of (56), in comparison withHL:

• If there is no disorder, D = 0 and H̃ is again simply a replicated elastic Hamiltonian, in which the
replicas are uncoupled.

E. Agoritsas – Mathematical tools for DES p.12



• The averaged disorder contribution is again proportional to D, inherited from the linearity in V of the
physical HamiltonianH.

• Unlike the Larkin model, the averaged effect of disorder exhibits a complex coupling of the replicas.
In fact,

∫
dz · eiλ(ua(z)−ub(z)) somehow reminds of a distance between two replicas of the system,

as illustrated by FIG 4. Indeed,
∫
dz sums over all the relative displacements between two possible

configurations ua and ub for a given λ (Fourier mode in the x direction), and each such pair of replicas
contributes to the effective Hamiltonian via

∑
ab. This may account for the presence of metastability

in the system.

ub(z)

ua(z)

ub(z) − ua(z)

z

x

Figure 4: ‘Distance’ between two configurations ua and ub.
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3 The variational method
Let us suppose that we have to deal with a Hamiltonian H which cannot be easily manipulated to compute
analytically thermal averages of observables. This means usually that the Hamiltonian is not quadratic,
in which case the well-known Gaussian integrals do not apply. The replica trick and the disorder average
applied on our model has left us precisely with such a Hamiltonian, by providing us with H̃ in (56).

If there is no other mathematical trick to compute exact results, we will have to try approximation
methods. For example a perturbative approach could provide accurate results, but only in the specific regime
where the expansion parameter is small enough. For an interface, the Larkin model is indeed valid only for
|u(z)| << ξ, at least for d > 1.

The variational method, based on the Bogoliubov inequality, is a recipe to construct a Hamiltonian
H0 (for our purpose quadratic, thus manipulable), such that its Boltzmann weight e−βH0/Z0 is the best
approximation to its exact counterpart e−βH/Z, in the sense that it has a ‘variational’ free energy Fvar as
close as possible to the exact free energy F of the system. Practically, this procedure provides a saddle point
equation for the trial Hamiltonian’s parameters. If one manages to find solutions of this equation, it is then
possible to makeH0 explicit, and to approximate ⟨O⟩ ≈ ⟨O⟩0, where:

⟨O⟩ ≡ 1

Z

∫
Du · O [u] · e−βH[u] =

∫
Du · O [u] · e−βH[u]∫
Du · e−βH[u]

(58)

⟨O⟩0 ≡ 1

Z0

∫
Du · O [u] · e−βH0[u] =

∫
Du · O [u] · e−βH0[u]∫
Du · e−βH0[u]

(59)

In this section, we first present the Bogoliubov inequality, which provides the free energy criterion for
the optimization of a given trial Hamiltonian H0. Then we describe generically the different steps of the
variational method and apply it to a replicated elastic disorder system, in order to obtain its generic saddle
point equation. We eventually consider the particular case of our model, by making explicit the content of
H̃dis in the saddle point equation.

In the next chapter, we will try as solutions of this saddle point equation a replica-symmetric and a full
replica-symmetry-breaking Ansatz forH0, and compute their respective roughness.

3.1 The Bogoliubov inequality
The (Gibbs-)Bogoliubov inequality states that the free energy F of a system is minimum at equilibrium, i.e.
when the system is described by its canonical Boltzmann weight e−βH/Z:

F = ⟨H⟩ − TS ≤ ⟨H⟩0 − TS0 ≡ Fvar (60)

where S and S0 are respectively the Boltzmann entropy of H and H0, and T the temperature, as usual.
Alternatively, the free energy of a system is given by its partition function via: F = −T logZ. In fact,
since the exact free energy of the system described byH0 is F0 = ⟨H0⟩0 − TS0 and one can trivially write
H = (H−H0) +H0, we can recover the usual formulation of the Bogoliubov inequality:

F ≤ ⟨H −H0⟩0 + F0 ≡ Fvar (61)

This relation can be viewed as a consequence of the convexity of the exponential present in the canonical
Boltzmann weight. Indeed, for any function g(x) such that

∂xg(x), ∂
2
xg(x) ≥ 0 ∀x ∈ [a, b] ⊂ R

we can write (⟨·⟩ denotes the average over [a, b]):

⟨g(x)⟩ ≥ g(⟨x⟩) (62)

This applies in particular to the exponential of any real scalar function f :

⟨exp(f)⟩ ≥ exp(⟨f⟩) (63)

Using (63) we can obtain the Bogoliubov inequality by comparing the partition functions Z and Z0, de-
fined respectively by the classical Hamiltonians H and H0 (thereafter

∑
{s} denotes the sum over all the

configurations as in an Ising formalism):

Z

Z0
=

∑
{s} e

−βH({s})∑
{s} e

−βH0({s})
=

∑
{s} e

−β(H−H0)e−βH0

Z0
=
∑
{s}

e−β(H−H0) · e
−βH0

Z0

≡
〈
e−β(H−H0)

〉
0

(63)
≥ e−β⟨H−H0⟩0 ⇐⇒ Z

Z0
≥ e−β⟨H−H0⟩0 (64)
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Taking the logarithm to obtain the free energies F and F0, it follows that:

logZ − logZ0 ≥ −β ⟨H −H0⟩0 ⇐⇒ −β−1 logZ︸ ︷︷ ︸
F

≤ ⟨H −H0⟩0−β−1 logZ0︸ ︷︷ ︸
F0

(65)

which is precisely the inequality (61) we were looking for.

Just for the record, the Bogoliubov inequality is valid even if the HamiltoniansH andH0 are operators,
as in quantum systems. In general operators do not commute, so one cannot simply state that e−βH =
e−β(H−H0)e−βH0 , and (63) has to be proven for f being a matrix.

3.2 Description of the variational method
We would like to solve the exact HamiltonianH of a system, i.e. to manage to compute its partition function
Z and its free energyF = −β−1 logZ, aiming to compute the thermal average of observables ⟨O⟩ (typically
correlation functions).

If this is not possible analytically, we can replace the exact Boltzmann weight ρ = e−βH

Z with ρ0 =
e−βH0

Z0
, where H0 can be solved (i.e. Z0 and F0 can be computed). The Bogoliubov inequality (61) guar-

antees that the exact free energy of the system is the lower limit for any variational free energy Fvar ≡
⟨H⟩0 − TS0 = ⟨H −H0⟩0 + F0. One may hope that the closer those free energies are, the best the
approximation ⟨O⟩ ≈ ⟨O⟩0 physically is. Thus the optimalH0 is obtained by minimizing Fvar.

The generic procedure of the variational method is as follows:

• we define a trial HamiltonianH0 which depends on a set of parameters {λi};
• we make explicit the corresponding Fvar as a function of {λi};
• we minimize Fvar in respect of {λi}, by applying the condition

∂Fvar

{
λ̃i

}
∂λi

= 0 ∀i (66)

(one can possibly use Lagrange multipliers to constrain the form ofH0 at this stage);

• we solve the saddle point equation thus obtained for the
{
λ̃i

}
;

• we fix the optimal form of H0 given by the
{
λ̃i

}
, and uses it to compute the corresponding averages

⟨O⟩0.

For completeness one should verify that the solutions of (66) correspond indeed to minima of Fvar, since
the saddle point equation picks up its maxima as well, if there are any. In principle the Hessian matrix{

∂2Fvar
∂λi∂λj

}
is needed to study the stability of those solutions, and to discriminate between the minima and

the maxima of Fvar. Or we could use our intuition of the physics of the problem to check the plausibility
of the available solutions. If there is only a few of them, the comparison of their respective variational free
energies eventually closes the argument. However one has to remember that this variational approximation
is not controlled, and that it can possibly produce non-physical artefacts, especially if H and H0 differ too
much.

3.3 Quadratic AnsatzH0 for a disordered elastic system with replicas
In this section, we aim to obtain the generic saddle point equation for the optimal approximation of a dis-
ordered elastic system with replicas, considering a trial quadratic Hamiltonian H0 parametrized by Ĝ−1(q)
(as in (23)):

H0 [u⃗] =
1

2

∫
ddq

(2π)d

∑
ab

u∗
a(q)G

−1
ab (q)ub(q) (67)

After the introduction of the replicas and the disorder average, a generic disordered elastic system is
described by an effective Hamiltonian H̃ such as:

H̃ [u⃗] = H̃el [u⃗] + H̃dis [u⃗] =
1

2

∫
ddq

(2π)d
· c(q) ·

∑
a

u∗
a(q)ua(q) + H̃dis [u⃗] (68)

where c(q) is the energy per Fourier mode q for each replica ua. H̃dis is left generic since it depends on the
specific model for disorder which is considered.
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The details of the computation are given thereafter, but at the end we actually obtain the following
equation for the optimalH0 coefficients:

G−1
ab (q) = c(q) · δab +

1

T

∂

∂Gab(q)

〈
H̃dis

〉
0

(69)

If there is no disorder,
〈
H̃dis

〉
0
= 0 and G−1

ab (q) = c(q) · δab: we have just found out that the best
quadratic approximation of an elastic Hamiltonian (which is already quadratic) is trivially itself.

In our model, the elastic forces are short ranged and c(q) = cq2. Moreover, the disorder is supposed
random-bond and uncorrelated; since Hdis is purely local in z by construction, ∂Gab(q)

〈
H̃dis

〉
0

shall not

depend on q anymore, as it is indeed the case. All the q dependence of G−1
ab (q) is inherited from the elastic

part of the Hamiltonian. We thus have:

G−1
ab (q) = cq2δab − σab with σab ≡ −

1

T

∂

∂Gab

〈
H̃dis

〉
0

(70)

If there is disorder, (70) is highly non-linear, since the approximation of H̃dis inH0 is itself a function of the
{σab}. This equation is thus self-consistant, and once the content of

〈
H̃dis

〉
0

will be made explicit, we will
try the replica symmetric and the full RSB Ansatz as solutions of the saddle point equation (70), and hope
that at least one of them will catch the main physics of the problem, without too many artifacts due to the
variational method.

3.3.1 Detailed computation of the generic saddle point equation (69)

The variational procedure described in the section 3.2 begins by making explicit F0 and
〈
H̃el −H0

〉
0
, and

taking their respective partial derivative ∂Gab(q). Note that the limit n→ 0 is completely skipped thereafter,
since we are approximating the n× n matrix of a replicated Hamiltonian, with n an arbitrary integer for the
time being.

Since H0 is given by the parameters
{
G−1

ab (q)
}

and the Gaussian integrals pick up the inverse of the
matrix describing the Hamiltonian, the thermal averages ⟨O⟩0 and the free energy F0 are functions of

{Gab(q)}. Since we have defined Fvar ≡ F0+
〈
H̃ − H0

〉
0

and H̃ ≡ H̃el + H̃dis, the optimization condition
(66) becomes here

∂Fvar

∂Gab(q)
≡ ∂

∂Gab(q)

(
F0 +

〈
H̃el −H0

〉
0
+
〈
H̃dis

〉
0

)
= 0 (71)

and gives a saddle point equation for the coefficients
{
G−1

ab (q)
}

, which are again recovered through the
Gaussian integrals of ⟨·⟩0.

We first compute F0 = −β−1 logZ0, using a discrete representation of the Fourier modes (cf. the
section 1):

Z0 ≡
∫
Du1(· · · )Dun · e−βH0[u⃗]

=

∫
Du1(· · · )Dun · e−

β
2

∫ ddq̃

(2π)d

∑
ab u∗

a(q̃)G
−1
ab (q̃)ub(q̃)

= J

(∏
q>0

∫ ∫
du1(q)du

∗
1(q)(· · · )dun(q)du

∗
n(q)

)
· e− β

Ω

∑
q̃>0

∑
ab u∗

a(q̃)G
−1
ab (q̃)ub(q̃)

= J
∏
q>0

(Ωβ−1)n

(∏
i

eigenvalues of Ĝ(q)

)
︸ ︷︷ ︸

det Ĝ(q)

= J
∏
q>0

(Ωβ−1)n det Ĝ(q) (72)

which implies that

F0 = −β−1 logZ0

(72)
= −β−1

∑
q>0

log
(
det Ĝ(q)

)
− β−1 log

(
J
∏
q>0

(Ωβ−1)

)
︸ ︷︷ ︸

cste

(73)
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To make explicit ∂Fvar/∂Gab(q), we need the matrix identity:

∂

∂Mab
log(detM) = (M−1)ab (74)

Thus
∂F0

∂Gab(q)

(73)
= −β−1

∑
q̃>0

∂

∂Gab(q)
log(det Ĝ(q̃))

(74)
= −β−1 ·G−1

ab (q) (75)

As for
〈
H̃el −H0

〉
0
, we have by definition:

〈
H̃el −H0

〉
0

=

〈
1

2

∫
ddq

(2π)d

(
c(q)

∑
a

u∗
a(q)ua(q)−

∑
ab

u∗
a(q)G

−1
ab (q)ub(q)

)〉
0

=
1

2

∫
ddq

(2π)d

∑
ab

(
c(q)δab −G−1

ab (q)
)
⟨u∗

a(q)ub(q)⟩0

(24)
=

1

2

∫
ddq

(2π)d

∑
ab

(
c(q)δab −G−1

ab (q)
)
· (2π)dβ−1Gab(q)

= (2π)dβ−1 · 1
2

∫
ddq

(2π)d

(
c(q)

∑
ab

δab Gab(q)−
∑
ab

G−1
ab (q)Gab(q)

)

= (2π)dβ−1 · 1
2

∫
ddq

(2π)d

(
c(q)

∑
a

Gaa(q)−
∑
a

1

)

= (2π)dβ−1 · 1
2

∫
ddq̃

(2π)d
· c(q̃) ·

∑
a

Gaa(q̃)− (2π)dβ−1 · 1
2︸ ︷︷ ︸

cste

(76)

Since c(q) and Gab(q) are symmetric for ±q, it follows for its partial derivative:

∂
〈
H̃el −H0

〉
0

∂Gab(q)
= β−1 · c(q) · δab (77)

Finally, combining the expressions (75) and (77), the optimization condition (71) becomes:

0 =
∂Fvar

∂Gab(q)
=

∂

∂Gab(q)

(
F0 +

〈
H̃el −H0

〉
0
+
〈
H̃dis

〉
0

)
[β−1≡T ]

= −T G−1
ab (q) + T c(q) · δab +

∂

∂Gab

〈
H̃dis

〉
0

which gives eventually the generic saddle point equation for the coefficients of the optimal H0, at a finite
temperature T > 0:

G−1
ab = c(q) · δab +

1

T

∂

∂Gab

〈
H̃dis

〉
0

(78)

3.4 Saddle point equation for the variational HamiltonianH0 of a 1D interface
To obtain the saddle point equation for the variationalH0 applied to our model, we still have to make explicit
in (70) the following thermal average:〈

H̃dis

〉
0

= −1

2
βD

∫
R

dλ

2π
· e−λ2ξ2

∫
Dz

dz
∑
ab

〈
eiλ(ua(z)−ub(z))

〉
0

(79)

before taking its partial derivative ∂Gab
, and thus relate it to the coefficients {σab} defined by (70).

We have essentially to determine the thermal average of a generic λ mode (a Fourier mode transversal
to the interface):〈

eiλ(ua(z)−ub(z))
〉
0
= exp

[
−λ2T · 1

2

∫
ddq

(2π)d
(Gaa(q) +Gbb(q)− 2Gab(q))

]
(80)
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Actually
〈
eiλ(ua(z)−ub(z))

〉
0

does not depend on z; this shows again the translational invariance of the

interface in the z direction, after averaging over disorder. In
〈
H̃dis

〉
0

the term
∫
dz thus corresponds to the

volume Ω of the system in the z direction, and physically the internal energy due to an ‘effective’ disorder
Hamiltonian should indeed be extensive:

〈
H̃dis

〉
0
∝ Ω. Using (80) in (79) in a discrete representation of

the Fourier modes:〈
H̃dis

〉
0
= −1

2
βDΩ

∫
R

dλ

2π
e−λ2ξ2

∑
a′b′

e−λ2T · 1
Ω

∑
q̃>0(Ga′a′ (q̃)+Gb′b′ (q̃)−2Ga′b′ (q̃)) (81)

Taking its partial derivative ∂Gab
and distinguishing the terms a = b and a ̸= b, we finally obtain for

σab, defined by (70):

σa̸=b =
D

T

∫
R

dλ

2π
· λ2 · e−λ2ξ2e

−λ2T
∫ ddq̃

(2π)d
(G̃(q̃)−Ga ̸=b(q̃)) (82)

σaa = −
∑
a′

σa′ ̸=a ≡ σ̃ (83)

The variational method thus provides us with a self-consistent equation for the coefficients
{
G−1

ab (q) = cq2 − σab

}
of the optimal quadratic and replicated Hamiltonian H0, to use in the computation of approximate thermal
averages with replicas in our model. Indeed,

G−1
a̸=b(q) = −σa̸=b (84)

G̃−1(q) = cq2 − σ̃ (85)

G−1
c (q) ≡

∑
a′

G−1
aa′(q) = G̃−1(q)−

∑
a′

σa′ ̸=a = cq2 (86)

and the σab coefficients are functions of the coefficients {Gab} which are accessible directly in the limit
n→ 0 via the inversion formulas (45)-(49), given in the section 2.

As announced at the end of the section 3.3, the σab do not depend on q. If there is no disorder, D = 0 and
H0 is a diagonal matrix with coefficients cq2, as expected for a quadratic Hamiltonian of uncoupled elastic
replicas. The irruption of disorder does not change the connected term G−1

c = cq2, it only populates the
off-diagonal elements of Ĝ−1 with the q-independent terms −σa ̸=b and the diagonal one by what is needed
to keep Gc =

1
cq2 invariant.

To move on to the computation of the roughness, we have now to find solutions of the equation (82), and
hope that at least one of them will correspond to an approximative Hamiltonian H0 which will catch some
of the physics of disorder. If we had worked directly with the exact effective replicated Hamiltonian H̃, we
would of course not have to choose between different solutions. In the next chapter, we will try two Ansätze
and compute their corresponding roughness.
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