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One dimensional KPZ equation

The [Kardar-Parisi-Zhang 1986] equation is a nonlinear stochastic PDE
describing the time evolution of a height function h(t, x). In one spatial
dimension,

∂th(x , t) = 1
2∂xxh(x , t) + 1

2

(
∂xh(x , t)

)2
+ ξ(x , t),

where ξ is a space-time white noise.

The KPZ equation is one toy model in a much wider class of models of
stochastic growth, directed polymers, out of equilibrium interacting
particle systems... Over the years, the subject has grown to include more
and more (sometimes unexpected) topics.



Mathematical definition

∂th(x , t) = 1
2∂xxh(x , t) + 1

2

(
∂xh(x , t)

)2
+ ξ(x , t)

When ξ is a space-time white noise, ∂xh(x , t) is not a function, it can

only be understood as a distribution, thus
(
∂xh(x , t)

)2
is ill-defined.

Stochastic PDE approach

Usually in SPDE theory, one mollifies the noise as ξϵ = ξ ∗ pε with some
smooth pε −−−→

ε→0
δ0, consider the solution hε of

∂th
ε = 1

2∂xxh
ε + 1

2

(
∂xh

ε
)2

+ ξε,

and show that the solution hϵ converges as ϵ→ 0. This is particularly
difficult for the KPZ equation and was achieved by [Bertini-Cancrini 1995]
and more generally by [Hairer 2011] [Gubinelli-Imkeller-Perkowski 2012]

For the KPZ equation, we define solutions as h(x , t) = logZ (x , t) where

∂tZ (x , t) = 1
2∂xxZ (x , t) + Z (x , t)ξ(x , t),



Directed polymer interpretation
By the Feynman-Kac formula, a solution of

∂tZ (x , t) = 1
2∂xxZ (x , t) + Z (x , t)ξ(x , t),

can be viewed as a path integral

Z (x , t) =

〈
Z0(B0) :exp:

(∫ t

0

ξ(Bs , s)ds

)〉
where Z0 is the initial condition at t = 0 and the expectation ⟨·⟩ is taken
over a Brownian motion B starting from a free point B0 and ending at
Bt = x .

x

t

ξ(x , t)

B0

(x , t)



Universality
Large scale fluctuations are characterized by universal exponents
(1/3, 2/3) (roughness χ = 1/2, dynamical exponent z = 3/2)
[Nelson-Forster-Stephen 1977], [Kardar-Parisi-Zhang]

x

h(x , t)

t1/3 fluctuations

t2/3 correlation scale

h(x , t)

For every model in the KPZ class described by a height function h(t, x),
we expect that

lim
L→+∞

{
1

L
h(L2x , L3t)

}
L→∞−−−→ h(t, x),

(up to some constants) where h(t, x) is called the KPZ fixed point
[Matetski, Quastel, Remenik 2017] and there is much activity in
understanding its properties.



One point fluctuations

For the KPZ equation, starting from h(x , t = 0) = log(δ0), we have

h(x , t) ∼
t→∞

−t/24

and

P
(
h(0, t) + t/24

(t/2)1/3
⩽ s

)
−−−→
n→∞

F2(s),

where F2 is the Tracy-Widom cumulative distribution function.

Proof (≈ 2010):

▶ Using directed polymers: [Calabrese-Le Doussal-Rosso][Dotsenko]
via Replica method + Bethe ansatz .

▶ Using ASEP: [Amir-Corwin-Quastel][Sasamoto-Spohn] via
[Tracy-Widom] Bethe ansatz solution of ASEP.

Today, one knows much more about fluctuations for other initial
conditions, multipoint correlations, large deviations (cf Gregory Schehr’s
talk), etc.



In this talk

In this talk, I will discuss

▶ A more complicated setup: the KPZ equation on a bounded
domain [0, L] instead of R;

▶ A simpler question: finding the non-equilibrium steady-state.

Vocabulary

There are some differences of vocabulary between statistical Physics and
Markov processes literature.

steady-state (equilibrium) = reversible stationary measure

where reversible means satisfying detailed balance πiPi→j = πjPj→i .

When detailed balance is not satisfied, as in out-of-equilibrium systems,
there may still be a

non-equilibrium steady state = non reversible stationary measure.



Stationary measures of the KPZ equation

The KPZ equation is such that h(0, t) ∼ −t
24 , which clearly diverges, so it

does not have a true stationary measure. But it has non-equilibrium
steady states in the following sense:

Definition (Non-equilibrium steady-state)

We say that the law of a process hstat(x) is stationary for the KPZ
equation when the following holds:

If h(x , 0) = hstat(x), then for all t > 0,

h(t, x) − h(t, 0)
(d)
= hstat(x) − hstat(0).

For the KPZ equation on R, the Brownian motion with drift µ (µ ∈ R
can be arbitrary) is stationary for the KPZ equation
[Forster-Nelson-Stephen 1977, Bertini-Giacomin 1997].



Stationary measures of stochastic PDEs

This stationarity of the Brownian motion is far from obvious!

▶ (Linear case) For stochastic PDEs of the form

∂tu = Lu + ξ

where L is a linear differential operator, stationary measures are
Gaussian and there exists a general theory.

▶ (Equilibrium case) The path integral measure

e−S[ϱ]Dϱ

is the stationary measure for the equation

∂tu = −δS [u]

δu
+
√

2ξ.

[Nelson 1966, Parisi-Wu 1981]

▶ The KPZ equation is non linear and out of equilibrium.



Bertini-Giacomin’s proof via ASEP

ASEP (asymmetric simple exclusion process) is a continuous Markov
process on {0, 1}Z, whose transition rates depend on an asymmetry
parameter q < 1.

−5 −4 −3 −2 −1 0 1 2 3 4 5 6

1 q 1 1q

▶ For any ϱ ∈ [0, 1], i.i.d. Bernoulli(ϱ) is a stationary measure.

▶ Define a height function H(x , t) so that

H(x , t) − H(x − 1, t) =

{
1 if site x is occupied.

−1 if site x is empty.

and H(0, t) is the number of particles which have crossed the origin.



Convergence ASEP → KPZ

Theorem ([Bertini-Giacomin 1997])

Let Zt(x) = q
1
2H(x,t)−νt , where ν = (1 −√

q)2. For q = e−ε, when
ε→ 0

Zϵ−4t(ϵ
−2x) =⇒ Z (x , t),

the solution of
∂tZ = 1

2∆Z + Z ξ.

ASEP height function converges to a solution of KPZ equation.

When occupation variables are i.i.d. Bernoulli, ASEP’s height function
converges to a Brownian motion (with drift), up to a global shift.

Corollary ([Bertini-Giacomin 1997])

For any drift µ ∈ R, the Brownian motion Bx + µx is stationary



Open KPZ equation on [0, L]
Consider the KPZ equation

∂th(t, x) = 1
2∂xxh(t, x) + 1

2

(
∂xh(t, x)

)2
+ ξ(t, x)

for x ∈ [0, L]. We may define it as h(t, x) = logZ (t, x) with

Z (x , t) =

〈
Z0(B0) exp

(∫ t

0

(ξ(Bs , s) − aδ0(Bs) − bδL(Bs)ds)

)〉
,

where, now, Bt is a Brownian motion reflected on walls at x = 0 and
x = L, and a, b ∈ R are some parameters.

0 L

ξ(x , t)

B0

(x , t)



Open KPZ equation
It may also be seen as the stochastic PDE

∂th(t, x) = 1
2∂xxh(t, x) + 1

2

(
∂xh(t, x)

)2
+ ξ(t, x)

with boundary conditions

∂xh(t, x)
∣∣∣
x=0

= u, ∂xh(t, x)
∣∣∣
x=L

= −v ,

with u = a + 1/2, v = b + 1/2. Since h(x , t) is not differentiable, some
care is needed to define what the boundary conditions exactly mean.

The corresponding version of ASEP is open ASEP

reservoir reservoir
1 2 3

. . .
ℓ

1 q 1 1qα

γ

β

δ

Physically, fixing ∂xh at the boundary corresponds to fixing the densities
imposed by the reservoirs [Corwin-Shen 2016].



Fluctuations in the open KPZ class
When L = O(t2/3), we expect that for all models in the KPZ class,

v

u

0

0

h(t, 0) ≈
cu,v (L)t + t1/3χu,v (L)h(t, 0) ≈

cu,v (L)t + t1/2N (0, σ2)

h(t, 0) ≈
cu,v (L)t + t1/2N (0, σ2)

Finding the distribution of χu,v is open. However, one can determine the
large t distribution of

h(x , t) − h(0, t).



Stationary measures on [0, L]
On a segment, the KPZ equation stationary measures has nontrivial
spatial correlations.

Theorem

For any u, v ∈ R, there exists a unique stationary process hstatu,v (x) with
law

hstatu,v (x)
(d)
= W (x) + X (x)

where W is a Brownian motion on [0, L] and X is a reweighted Brownian
motion

Pstat
u,v (X ) =

1

Z̃u,v (L)
e−vX (L)

(∫ L

0

e−X (s)ds

)−u−v

PBrown
X0=0 (X ).

▶ When u + v = 0, hstatu,v is a Brownian motion with drift −v .

▶ When u, v > 0, the profile is curved.

▶ Exponential functionals of the Brownian motion have been
well-studied, so that one can obtain precise quantitative information
about hstatu,v (x).



Proof

The initial proof of the result relied on:

▶ The characterization of open ASEP stationary measure via the
matrix product ansatz [Derrida-Evans-Hakim-Pasquier 1993]

1 2 3
. . .

ℓ

1 q 1 1qα

γ

β

δ

▶ A representation of the matrix product ansatz
[Uchiyama-Sasamoto-Wadati 2004] and its relation to Askey-Wilson
processes [Bryc-Wesolowski 2015]

▶ When u + v ⩾ 0, [Corwin-Knizel 2021] took the KPZ limit and
characterized hstatu,v through Laplace transform formulas.

▶ [Bryc-Kuznetsov-Wang-Weso lowski 2022] and [B.- Le Doussal 2022]
worked out Laplace inversion.

▶ [Matetski-Knizel 2023, Parekh 2023] Uniqueness of the stationary
process using ideas of [Hairer-Mattingly 2015]

If time permits, we will see another, more direct, method



Brownian motion in exponential potential

When u + v ⩾ 0, the process X (x) may be written as

X (x) = Y (x) − Y (0),

where Y is a reweighted Brownian motion

Pstat
u,v (Y ) =

1

Zu,v (L)
exp

(
−uY (0) − vY (L) −

∫ L

0

e−Y (s)ds

)
PBrown
free (Y ),

where

PBrown
free (Y ) = exp

(
−1

2

∫ L

0

(
dY (s)

ds

)2

ds

)
D(Y ).

The process Y can only be defined for u + v > 0.

To obtain the previous description, one needs to average over Y (0), and
then the measure makes sense for any u, v .



Liouville quantum mechanics

1

Zu,v (L)
exp

(
−uY (0) − vY (L) −

∫ L

0

e−Y (s)ds − 1

2

∫ L

0

(
dY (s)

ds

)2

ds

)
D(Y )

The initial proof of the theorem came from recognizing eigenfunctions of

H = −∆ + e−x

in exact formulas from [Corwin-Knizel].

Y (t) is a Markov process with transition probability

ps,t(x , y) =
ht(y)

hs(x)
qt−s(x , y), qt(x , y) =

∫
R
ψik(x)ψik(y)e−k2tdk

where ψk(x) form an eigenbasis of −∆ + e−x with eigenvalue k2, and

ht(y) =

∫
R
qL−t(x , y)e−vydy .

This is sometimes referred to as Liouville quantum mechanics and used
to compute exponential functionals of the Brownian motion [Comtet,
Texier, Monthus, Le Doussal, ...]



Extensions, variants, universality

Analogues of these results exist for discrete models, where reweighted
Brownian motions become reweighted random walks

▶ TASEP [Derrida-Enaud-Lebowitz 2004] ASEP [B.-Le Doussal 2022],
based on Matrix Product Ansatz.

▶ Last-Passage Percolation with geometric or exponential weights and
the log-gamma polymer [B.-Corwin-Yang 2023], based on a different
approach relying on symmetric functions and Gibbsian line
ensembles.

In all cases, the stationary process converges at large scale (L → ∞) to
the same universal limit: a Brownian motion W plus a Brownian motion
with hard wall potential.

V (x) = e−
√
Lx −−−→

L→∞

{
+∞ if x < 0,

0 if x > 0.



Matrix product ansatz
Consider ASEP on {0, 1}ℓ with boundary parameters α,β,γ, δ.

reservoir reservoir
1 2 3

. . .
ℓ

1 q 1 1qα

γ

β

δ

We describe the state of the system by η ∈ {0, 1}ℓ. The stationary
measure P can be written as [Derrida-Evans-Hakim-Pasquier 1993]

P(η) =
1

Zℓ
⟨w |

ℓ∏
i=1

(ηiD + (1 − ηi )E ) |v⟩

where
Zℓ = ⟨w | (E + D)ℓ |v⟩

and E ,D are infinite matrices, and ⟨w | , |v⟩ are row/column vectors such
that

DE − qED = D + E

⟨w | (αE − γD) = ⟨w |
(βD − δE ) |v⟩ = |v⟩



Representations of the MPA

▶ Finding representations, i.e. matrices E ,D and explicit vectors u, v
satisfying the relations, is non trivial. Special cases are worked out in
[Derrida-Evans-Hakim-Pasquier 1993].

▶ For TASEP, q = γ = δ = 0, we may take

D =


1 1 0

0 1 1
. . .

0 0 1
. . .

...
. . .

. . .

 ,E =


1 0 0 . . .
1 1 0

0 1 1
. . .

...
. . .

. . .


and easily find eigenvectors ⟨w | , |v⟩.

▶ [Sandow, 1995] proposed a representation in the most general case.
The vectors ⟨w | , |v⟩ are complicated.

▶ Several families of orthogonal polynomials appear. In the most
general case, [Uchiyama-Sasamoto-Wadati, 2003] found a
representation using Askey-Wilson orthogonal polynomials.

▶ Another very simple representation was proposed in [Enaud-Derrida,
2003]



Enaud-Derrida’s representation

Enaud-Derrida found a very simple representation for any parameters
q,α,β,γ, δ. When

γ = q(1 − α), δ = q(1 − β) ⇐⇒ ϱ0 = α, 1 − ϱℓ = β

it becomes :

D =


[1]q [1]q 0 0 0 · · ·
0 [2]q [2]q 0 0 · · ·
0 0 [3]q [3]q 0 · · ·
...

... 0
. . .

. . .
. . .

 , E =


[1]q 0 0 0 · · ·
[2]q [2]q 0 0 · · ·
0 [3]q [3]q 0

0 0
. . .

. . .
. . .


where [n]q = 1−qn

1−q .

Denoting by {|n⟩}n⩾1 the vectors of the associated basis, let

⟨w | =
∑
n⩾1

(
1 − ϱ0
ϱ0

)n

⟨n| , |v⟩ =
∑
n⩾1

(
ϱℓ

1 − ϱℓ

)n

[n]q |n⟩ .



Sum over paths

Due to the bidiagonal structure, the normalization constant
Zℓ = ⟨w | (D + E )ℓ |v⟩ can be written as a sum over lattice paths
n⃗ = (n0, n1, . . . , nℓ) ∈ Nℓ of the form

Zℓ =
∑
n⃗

Ω(n⃗)

where

Ω(n⃗) =

(
1 − ϱ0
ϱ0

)n0 ( ϱℓ
1 − ϱℓ

)nℓ ℓ∏
i=1

v(ni−1, ni )
ℓ∏

i=0

[ni ]q,

with

v(n, n′) =


2 if n = n′,

1 if |n − n′| = 1

0 else.

▶ This introduces a natural probability measure on random walk paths
n⃗. The stationary measure P(η) can be recovered from this measure.



Open ASEP invariant measure

Following arguments similar as [Derrida-Enaud-Lebowitz 2004], one
arrives at

Theorem ([B.-Le Doussal 2022])

Under the stationary measure P(η), ASEP height function
H(x) =

∑x
j=1(2ηi − 1) is such that

(H(i))1⩽i⩽ℓ

(d)
= (ni − n0 + mi )1⩽i⩽ℓ ,

where (ni ,mi )0⩽i⩽ℓ is a two dimensional random walk on Z2, starting
from (n0, 0), distributed as

P(n⃗, m⃗) =
1n0>0

4−ℓZℓ

(
1 − ϱ0
ϱ0

)n0 ( ϱℓ
1 − ϱℓ

)nℓ ℓ∏
i=0

[ni ]q × PSSRW
n0,0 (n⃗, m⃗),

where PSSRW
n0,0

denotes the probability measure of the symmetric simple

random walk (SSRW) on Z2 starting from (n0, 0).



Scaling limit to the KPZ equation

Under the scalings such that ASEP’s height function converges to KPZ,
in particular

q = 1 − ε, ℓ = ε−2, ϱ0 =
1

2
(1 + uε), ϱℓ =

1

2
(1 − vε)

we find, denoting by Yx the rescaled version of the random walk ni

ℓ∏
i=0

[ni ]q → e−
∫ L
0
e−2Ys ds

(
1 − ϱa
ϱa

)n0 ( ϱb
1 − ϱb

)nℓ

→ e−2uY0−2vYL

so that
(mi , ni ) =⇒ (Wx ,Yx)

where Wx is a Brownian motion and Yx is a Brownian motion reweighted
by

1

Zu,v
e−2uY0−2vYLe−

∫ L
0
e−2Ys ds .



Growth rate of the stationary KPZ equation
Using limits of discrete models, one can deduce that for the KPZ
equation

∂th = 1
2∂xxh + 1

2

(
∂xh
)2

+ ξ, t ⩾ 0, x ∈ [0, L]

with stationary initial data h(0, x) = hstatu,v (x).

Then, for all t > 0,
E[h(t, 0)] = t cu,v (L),

where in the maximal current phase, u, v > 0,

cu,v (L) =
−1

24
+

1

2
∂L logZu,v (L)

where Zu,v (L) (the same renormalization constant as before) can be
computed exactly as

Zu,v (L) =

∫
iR

dz

2iπ

∣∣∣∣Γ(u + z)Γ(v + z)

Γ(2z)

∣∣∣∣2 ez2L2
.

If u < 0 or v < 0, cu,v (L) can be obtained through analytic continuation.



Large scale limit

As L goes to infinity, cu,v (L) should be the same as for the KPZ equation
on R, except when boundaries play a role. Indeed, we have

v

u

0

0

cu,v (∞) = −1
24cu,v (∞) = −1

24 + u2

2

cu,v (∞) = −1
24 + v2

2



Conclusion

Summary

For the KPZ equation on [0, L] (and discrete analogues) the
non-equilibrium steady-state is not Brownian but it can be described in
terms of some path integral (a Brownian motion in an exponential
potential).

Other directions

▶ A similar result holds for the KPZ equation on R+ (more is known
on R+).

▶ Similar results hold for the various integrable discrete models.

▶ Open question: characterize the typical fluctuations of h(x , t).

▶ What happens in higher dimensions?

Thank you for your attention


