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Chapter 1

Introduction
- why should we care this? -

2



3

Physics of Critical Phenomena & Scaling Laws

1869 Discovery of liquid-vapor
critical point (Ising class)

1890’s- 𝛽𝛽 ≈ 0.3-0.4
(cf. 3D Ising 𝛽𝛽 ≈ 0.326)

1944 Onsager’s solution to 2D Ising

1950’s- Experiments on binary fluids
& Ising-type magnets

1971 Wilson’s renormalization group,
φ4 model (continuum equation) 
“Ising universality class”

1984 2D conformal field theory
classifying universality classes

2011- Conformal approach to 3D Ising

1980’s Scaling laws for discrete
models of interface growth

1986 KPZ eq. (continuum eq.)

1997 Experiments on KPZ exponents

2000 Exact solutions
to 1D discrete models

on distributions & correlations

2010 Experiment on exact results

2010 Exact solutions to 1D KPZ eq.

2019 KPZ corr. func. in Heisenberg

2021-22 Exp’ts on KPZ-Heisenberg link

2022 Exp’t on KPZ in polaritons

… … … …

Equilibrium (major player: Ising) Non-eq (major player: KPZ?)
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Classic Target of KPZ:  Growing Interfaces

Calahorra Mountain Club’s Facebook [1]

fire spreading liquid crystal turbulence

Takeuchi et al., 2010-12 [4-6]

particle deposition

Yunker et al. Nature 2011 [7] (see also [8]) Huergo et al. Phys. Rev. E 2012 [9]

cancer cell proliferation

paper 
combustion

Timonen group,
PRL 1997, PRE 2001 [2,3]
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Classic Target of KPZ:  Growing Interfaces

liquid crystal turbulence

←凹 凸→

local height
h(x,t)

δh

fluctuation amplitude 𝛿𝛿𝛿 vs time 𝑡𝑡

𝛿𝛿𝛿 ∼ 𝑡𝑡𝛽𝛽 with 𝛽𝛽 = ⁄1 3
(1D KPZ exponent)scaling law

distribution law
(outcome of exact solution)

x 𝛿𝛿𝛿 ≡ 𝛿 − 𝛿

Takeuchi et al., 2010-12 [4-6]
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Expanding Scope of KPZ

Physical phenomena / models

Theoretical concepts
universal scaling laws out of equilibrium (& in), integrable systems, 
random matrix theory, probability theory, combinatorics, ...

growing interfaces stirred fluid

interacting Bose gas

nonlinear fluctuating
hydrodynamics

polariton condensate

quantum spin chains

directed polymer

Takeuchi et al., 2010-12 [4-6]

stochastic particle transport

Anderson insulator
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Lecture Plan

Aims
 To understand (1) what is KPZ, (2) connections to different 

systems, (3) main outcomes of the modern developments.
 Foster intuitive understanding of the outcomes, 

rather than technical & mathematical details.
Table of contents
1. Introduction: why should we care this?
2. Scaling exponents and universality classes
3. Basic properties of the KPZ equation
4. Experiments on KPZ & related interfaces
5. Distribution and correlation properties: stationary & non-stationary cases
6. Experimental test of distribution and correlation properties
7. Distribution properties for general cases and variational formula
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Recommended Reviews on KPZ

(Takeuchi’s lecture notes)
[10] K. A. Takeuchi, Physica A 504, 77 (2018)

(before 2000 = before the exact solutions)
[11] A.-L. Barabási & H. E. Stanley, Fractal Concepts in Surface Growth

(Cambridge Univ. Press, 1995).
[12] T. Halpin-Healy & Y.-C. Zhang, Phys. Rep. 1995.
[13] J. Krug, Adv. Phys. 1997.

(after 2000)
[14] I. Corwin, Random Matrices Theory Appl. 2012.
[15] J. Quastel & H. Spohn, J. Stat. Phys. 2015.
[16] T. Kriecherbauer and J. Krug, J. Phys. A 2010.
[17] T. Sasamoto, Prog. Theor. Exp. Phys. 2016.
[18] H. Spohn, Lect. Notes Phys. 2016 (nonlinear fluctuating hydrodynamics)
[19] I.Corwin & H. Shen, Bull. Am. Math. Soc. 2020 (well-definedness of KPZ eq.)
[20] V. B. Bulchandani et al., J. Stat. Mech. 2021 (quantum spin chains)
[21] S. Prolhac, arXiv:2401.15016 (KPZ in finite systems)



Chapter 2

Scaling exponents and universality classes

Main references [10-13]
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Classic Target of KPZ:  Growing Interfaces
Coarse-grained time evolution for those growing interfaces?

Calahorra Mountain Club’s Facebook [1]

fire spreading liquid crystal turbulence

Takeuchi et al., 2010-12 [4-6]
particle deposition

Yunker et al. Nature 2011 [7] (see also [8]) Huergo et al. Phys. Rev. E 2012 [9]

cancer cell proliferation

paper 
combustion

Timonen group,
PRL 1997, PRE 2001 [2,3]
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A Warm-Up Example

Random deposition of blocks
Drop a block 

randomly at a constant rate
at random positions.

 Blocks just accumulate.
No interaction with neighbor sites.

➔ 𝛿(𝑥𝑥, 𝑡𝑡) ∼ 𝑡𝑡
𝛿𝛿𝛿 𝑥𝑥, 𝑡𝑡 ≡ 𝛿 𝑥𝑥, 𝑡𝑡 − 𝛿 𝑥𝑥, 𝑡𝑡

∼ 𝑡𝑡1/2 (∵ law of large numbers), Gaussian

Coarse-graining

➔
𝜕𝜕
𝜕𝜕𝜕𝜕
𝛿 𝑥𝑥, 𝑡𝑡 = 𝑣𝑣0 + 𝜂𝜂 𝑥𝑥, 𝑡𝑡

𝜂𝜂(𝑥𝑥, 𝑡𝑡): white Gaussian noise
𝜂𝜂(𝑥𝑥, 𝑡𝑡) = 0
𝜂𝜂 𝑥𝑥, 𝑡𝑡 𝜂𝜂(𝑥𝑥′, 𝑡𝑡′) = 𝐷𝐷𝛿𝛿 𝑥𝑥 − 𝑥𝑥′ 𝛿𝛿(𝑡𝑡 − 𝑡𝑡′)
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w/o surface relaxation w/ surface relaxation

If Blocks Interact…

In the case of random deposition with surface relaxation
Dropped block can slide to its lower neighbor.

Coarse-graining
➔ 𝜕𝜕

𝜕𝜕𝜕𝜕
𝛿 𝑥𝑥, 𝑡𝑡 = 𝑣𝑣0 + 𝜈𝜈∇2𝛿 + 𝜂𝜂 𝑥𝑥, 𝑡𝑡

“Edwards-Wilkinson equation”

𝑡𝑡 = 20

𝑡𝑡 = 60

𝑡𝑡 = 100
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If Blocks Interact…

 𝑣𝑣0 can be omitted by 𝛿 ≡ 𝛿′ + 𝑣𝑣0𝑡𝑡
 Scaling law?
Suppose solutions are statistically invariant 

under the following scale transformations:
𝑥𝑥 ≡ 𝑏𝑏𝑥𝑥′, 𝑡𝑡 ≡ 𝑏𝑏𝑧𝑧𝑡𝑡′, 𝛿𝛿𝛿 ≡ 𝑏𝑏𝛼𝛼𝛿𝛿𝛿′

(scale invariance, or more specifically, self-affinity)

➔ 𝑏𝑏𝛼𝛼−𝑧𝑧 = 𝑏𝑏𝛼𝛼−2 = 𝑏𝑏−(𝑑𝑑+𝑧𝑧)/2 (𝑑𝑑: space dimensionality)

∴ 𝑧𝑧 = 2, 𝛼𝛼 = 2−𝑑𝑑
2

, 𝛽𝛽 = 2−𝑑𝑑
4

𝑑𝑑 = 1 ➔ 𝛼𝛼 = ⁄1 2 ,𝛽𝛽 = ⁄1 4 ∴ 𝛿𝛿𝛿 ∼ 𝑡𝑡1/4

𝜕𝜕
𝜕𝜕𝜕𝜕
𝛿 𝑥𝑥, 𝑡𝑡 = 𝑣𝑣0 + 𝜈𝜈∇2𝛿 + 𝜂𝜂 𝑥𝑥, 𝑡𝑡

“Edwards-Wilkinson equation”

𝛿𝛿𝛿 ∼ 𝑡𝑡𝛽𝛽 with 𝛽𝛽 = 𝛼𝛼
𝑧𝑧

Edwards-Wilkinson 
universality class

𝑡𝑡 = 20

𝑡𝑡 = 60

𝑡𝑡 = 100
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Call for Nonlinearity

Edwards-Wilkinson equation

linear & easy to solve exactly! 
… but unnatural.

Kardar-Parisi-Zhang (KPZ) equation (1986) [22]

Generic equation incorporating
lowest-order nonlinearity.

 For 𝑑𝑑 = 1, (to show later)

KPZ universality class.

𝜕𝜕
𝜕𝜕𝜕𝜕
𝛿 𝑥𝑥, 𝑡𝑡 = 𝑣𝑣0 + 𝜈𝜈∇2𝛿 + 𝜂𝜂 𝑥𝑥, 𝑡𝑡

perhaps
more 
naturally

𝜕𝜕
𝜕𝜕𝜕𝜕
𝛿 𝑥𝑥, 𝑡𝑡 = 𝑣𝑣0 + 𝜈𝜈∇2𝛿 + 𝜆𝜆

2
∇𝛿 2 + 𝜂𝜂 𝑥𝑥, 𝑡𝑡

𝛼𝛼 = 1
2

, 𝛽𝛽 = 1
3

, 𝑧𝑧 = 3
2
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Some Remarks on KPZ

KPZ equation

 𝑣𝑣0 can be omitted by 𝛿 ≡ 𝛿′ + 𝑣𝑣0𝑡𝑡

 Symmetry:  KPZ is invariant under
 Time translation 𝑡𝑡 ≡ 𝑡𝑡′ + 𝑡𝑡0
 Space translation 𝑥𝑥 ≡ 𝑥𝑥′ + 𝑥𝑥0
 Space inversion, e.g., 𝑥𝑥 ≡ −𝑥𝑥′ & space rotation
 Height translation 𝛿 ≡ 𝛿′ + 𝛿0

KPZ class generically arises 
under this symmetry.

 No isotropic growth needed.

𝜕𝜕
𝜕𝜕𝜕𝜕
𝛿 𝑥𝑥, 𝑡𝑡 = 𝑣𝑣0 + 𝜈𝜈∇2𝛿 + 𝜆𝜆

2
∇𝛿 2 + 𝜂𝜂 𝑥𝑥, 𝑡𝑡

➔ term like −a𝛿 is forbidden.
Systems are automatically at criticality.

Example:
ballistic deposition



16

Other Universality Classes

Quenched KPZ equation

𝐹𝐹 can NOT be omitted 
(∵ by 𝛿 ≡ 𝛿′ + 𝐹𝐹𝑡𝑡,  𝜂𝜂 is not quenched any more)

 Pinning-depinning transition
 𝐹𝐹 > 𝐹𝐹𝑐𝑐 : interface grows, KPZ scaling (𝜂𝜂(𝑥𝑥,𝛿) is equivalent to 𝜂𝜂(𝑥𝑥, 𝑡𝑡))
 𝐹𝐹 < 𝐹𝐹𝑐𝑐 : interface pinned
 𝐹𝐹 ≈ 𝐹𝐹𝑐𝑐 : critical scaling, 𝛼𝛼 = 𝛽𝛽 ≈ 0.633. 

“quenched KPZ class” related to the directed percolation class
[11,23,24]

𝜕𝜕
𝜕𝜕𝜕𝜕
𝛿 𝑥𝑥, 𝑡𝑡 = 𝐹𝐹 + 𝜈𝜈∇2𝛿 + 𝜆𝜆

2
∇𝛿 2 + 𝜂𝜂 𝑥𝑥,𝛿(𝑥𝑥, 𝑡𝑡)



17

Other Universality Classes

Conserved growth [11]
 Suppose surface diffusion of particles 

takes place much faster than deposition.

 Then we have: 𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −∇ ⋅ 𝐽𝐽 + 𝑣𝑣0 + 𝜂𝜂(𝑥𝑥, 𝑡𝑡)

 Simplest case: 𝐽𝐽 ∝ −∇(chemical potential 𝜇𝜇), 𝜇𝜇 ∝ −∇2𝛿
➜

𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝜅𝜅∇4𝛿 + 𝜂𝜂(𝑥𝑥, 𝑡𝑡) : Mullins-Herring (MH) equation

 𝛼𝛼 = 4−𝑑𝑑
2

,𝛽𝛽 = 4−𝑑𝑑
8

, 𝑧𝑧 = 4 (MH class)

Nonlinear case: molecular beam epitaxy (MBE) class
𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝜅𝜅∇4𝛿 + 𝜆𝜆1∇2 ∇𝛿 2 + 𝜆𝜆2∇ ⋅ ∇𝛿 3 + 𝜂𝜂(𝑥𝑥, 𝑡𝑡)

 Renormalization group result: 𝛼𝛼 = 4−𝑑𝑑
3

,𝛽𝛽 = 4−𝑑𝑑
8+𝑑𝑑

, 𝑧𝑧 = 8+𝑑𝑑
3

𝐽𝐽: flux
𝑣𝑣0 can be omitted
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How to Measure the Exponents?

Family-Vicsek scaling [10-13]

Measure a scale of 𝛿𝛿𝛿, as a function of lateral scale ℓ & time 𝑡𝑡.
e.g., interface width 𝑤𝑤(ℓ, 𝑡𝑡) = standard deviation in length ℓ

Then, Family-Vicsek scaling

𝑤𝑤 ℓ, 𝑡𝑡 ∼ �
ℓ𝛼𝛼 (ℓ ≪ 𝜉𝜉 𝑡𝑡 )
𝑡𝑡𝛽𝛽 (ℓ ≫ 𝜉𝜉 𝑡𝑡 )

 

with 𝜉𝜉 𝑡𝑡 ∼ 𝑡𝑡1/𝑧𝑧 Example
from [6]



Chapter 3

Basic Properties of the KPZ Equation

Main references [10-13]
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3.1 Relation to the Noisy Burgers Equation

KPZ equation

Take the gradient & define �⃗�𝑣 �⃗�𝑥, 𝑡𝑡 ≡ −𝜆𝜆∇𝛿
➜

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕

+ �⃗�𝑣 ⋅ ∇ �⃗�𝑣 = 𝜈𝜈∇2�⃗�𝑣 − 𝜆𝜆∇𝜂𝜂

Consequences
 Invariant under Galilean trans.  �⃗�𝑣′ �⃗�𝑥 − �⃗�𝑣0𝑡𝑡, 𝑡𝑡 ≡ �⃗�𝑣 �⃗�𝑥, 𝑡𝑡 − �⃗�𝑣0
Galilean symmetry is kept under scale transformation.

➜ Advection term �⃗�𝑣 ⋅ ∇ �⃗�𝑣 is non-renormalized.

 If �⃗�𝑣 �⃗�𝑥, 𝑡𝑡 ≡ −∇𝛿 ➜ 𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕

+ 𝜆𝜆 �⃗�𝑣 ⋅ ∇ �⃗�𝑣 = 𝜈𝜈∇2�⃗�𝑣 − ∇𝜂𝜂
➜ 𝜆𝜆 is invariant under scale transformation.

 Scale transformation 𝑥𝑥 ≡ 𝑏𝑏𝑥𝑥′, 𝑡𝑡 ≡ 𝑏𝑏𝑧𝑧𝑡𝑡′, 𝛿𝛿𝛿 ≡ 𝑏𝑏𝛼𝛼𝛿𝛿𝛿′
➜ 𝑏𝑏𝛼𝛼−𝑧𝑧 = 𝑏𝑏2(𝛼𝛼−1)

𝜕𝜕
𝜕𝜕𝜕𝜕
𝛿 �⃗�𝑥, 𝑡𝑡 = 𝑣𝑣0 + 𝜈𝜈∇2𝛿 + 𝜆𝜆

2
∇𝛿

2
+ 𝜂𝜂 �⃗�𝑥, 𝑡𝑡

: noisy Burgers equation [25]
(toy model for fluid & shock waves)

➜  𝛼𝛼 + 𝑧𝑧 = 2   valid for any 𝑑𝑑!
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3.2 Stationary State of 1D KPZ Equation

Langevin equation & Fokker-Planck equation [26]

Langevin PDE & functional Fokker-Planck equation [26]

𝑑𝑑𝑋𝑋𝑖𝑖
𝑑𝑑𝜕𝜕

= 𝐹𝐹𝑖𝑖 𝑋𝑋𝑗𝑗 + 𝜂𝜂𝑖𝑖(𝑡𝑡)  with 𝜂𝜂𝑖𝑖(𝑡𝑡) = 0, 𝜂𝜂𝑖𝑖 𝑡𝑡 𝜂𝜂𝑗𝑗(𝑡𝑡′) = 𝐷𝐷𝛿𝛿𝑖𝑖𝑗𝑗𝛿𝛿 𝑡𝑡 − 𝑡𝑡′

𝜕𝜕
𝜕𝜕𝑡𝑡
𝑃𝑃 𝑋𝑋𝑗𝑗 , 𝑡𝑡 = −�

𝑖𝑖

𝜕𝜕
𝜕𝜕𝑋𝑋𝑖𝑖

𝐹𝐹𝑖𝑖 𝑋𝑋𝑗𝑗 𝑃𝑃 𝑋𝑋𝑗𝑗 , 𝑡𝑡 +
𝐷𝐷
2
�
𝑖𝑖

𝜕𝜕2

𝜕𝜕𝑋𝑋𝑖𝑖2
𝑃𝑃 𝑋𝑋𝑗𝑗 , 𝑡𝑡

𝜕𝜕
𝜕𝜕𝑡𝑡
𝛿(�⃗�𝑥, 𝑡𝑡) = 𝐹𝐹 𝛿 �⃗�𝑥, 𝑡𝑡 + 𝜂𝜂(�⃗�𝑥, 𝑡𝑡)

𝜕𝜕
𝜕𝜕𝑡𝑡
𝑃𝑃 𝛿(�⃗�𝑥),𝑡𝑡 =−�𝑑𝑑𝑑𝑑�⃗�𝑥

𝛿𝛿
𝛿𝛿𝛿
𝐹𝐹[𝛿(�⃗�𝑥)]𝑃𝑃 𝛿(𝑥𝑥),𝑡𝑡 +

𝐷𝐷
2
�𝑑𝑑𝑑𝑑�⃗�𝑥

𝛿𝛿2

𝛿𝛿𝛿2
𝑃𝑃 𝛿(�⃗�𝑥),𝑡𝑡

with functional derivative 𝛿𝛿
𝛿𝛿𝜕
≡ 𝜕𝜕

𝜕𝜕𝜕
− ∇ ⋅ 𝜕𝜕

𝜕𝜕(∇𝜕)
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3.2 Stationary State of 1D KPZ Equation

Edwards-Wilkinson equation (𝑑𝑑 dimension)

Stationary solution (𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 = 0)

𝑃𝑃statEW 𝛿 �⃗�𝑥 ∝ exp −∫ 𝑑𝑑𝑑𝑑𝑥𝑥 𝜈𝜈
𝐷𝐷
∇𝛿

2

 For 1D: Stationary solution = Brownian motion
𝛿stat
EW,1D 𝑥𝑥 = 𝐴𝐴𝐵𝐵(𝑥𝑥) with 𝐴𝐴 ≡ 𝐷𝐷

2𝜈𝜈
𝐵𝐵 𝑥𝑥 = standard Brownian motion

𝐵𝐵 𝑡𝑡 + Δ𝑡𝑡 − 𝐵𝐵 𝑡𝑡 2 = Δ𝑡𝑡

➜ Δ𝛿 ∼ Δ𝑥𝑥 ⁄1 2 ∴ 𝛼𝛼 = 1
2

𝜕𝜕
𝜕𝜕𝜕𝜕
𝛿 �⃗�𝑥, 𝑡𝑡 = 𝜈𝜈∇2𝛿 + 𝜂𝜂 �⃗�𝑥, 𝑡𝑡

𝜕𝜕
𝜕𝜕𝑡𝑡
𝑃𝑃 𝛿(�⃗�𝑥),𝑡𝑡 =−�𝑑𝑑𝑑𝑑�⃗�𝑥

𝛿𝛿
𝛿𝛿𝛿

(𝜈𝜈∇2𝛿)𝑃𝑃 𝛿(�⃗�𝑥),𝑡𝑡 +
𝐷𝐷
2
�𝑑𝑑𝑑𝑑�⃗�𝑥

𝛿𝛿2

𝛿𝛿𝛿2
𝑃𝑃 𝛿(�⃗�𝑥),𝑡𝑡

for interface

𝐵𝐵
𝑡𝑡

for BM
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3.2 Stationary State of 1D KPZ Equation

KPZ equation (𝑑𝑑 dimension)

Stationary solution (𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 = 0)

Not available for general 𝑑𝑑.
 Exceptionally, for 1D, stationary solution = Brownian motion
𝛿stat
KPZ,1D 𝑥𝑥 = 𝛿stat

EW,1D 𝑥𝑥 = 𝐴𝐴𝐵𝐵(𝑥𝑥)
∴ 𝛼𝛼 = 1/2.

With 𝛼𝛼 + 𝑧𝑧 = 2,
𝛼𝛼 = 1

2
, 𝛽𝛽 = 1

3
, 𝑧𝑧 = 3

2
(1D KPZ) 

𝜕𝜕
𝜕𝜕𝜕𝜕
𝛿 �⃗�𝑥, 𝑡𝑡 = 𝜈𝜈∇2𝛿 + 𝜆𝜆

2
∇𝛿

2
+ 𝜂𝜂 �⃗�𝑥, 𝑡𝑡

𝜕𝜕𝑃𝑃
𝜕𝜕𝑡𝑡

=−�𝑑𝑑𝑑𝑑�⃗�𝑥
𝛿𝛿
𝛿𝛿𝛿

(𝜈𝜈∇2𝛿 + 𝜆𝜆
2 ∇𝛿

2
)𝑃𝑃 𝛿(�⃗�𝑥),𝑡𝑡 +

𝐷𝐷
2
�𝑑𝑑𝑑𝑑�⃗�𝑥

𝛿𝛿2

𝛿𝛿𝛿2
𝑃𝑃 𝛿(�⃗�𝑥),𝑡𝑡

for interface

𝐵𝐵
𝑡𝑡

for BM
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3.3 Well-definedness of KPZ Equation [19]

KPZ equation

KPZ equation (as is) is ill-defined!
 Problem circumvented in discretized KPZ equation, 

but its interpretation is not so trivial
(see [27] for simulations of discretized KPZ equation).

What do we mean by “KPZ equation”? (what is its solution?)
 The answer is established for 1D [19]

 Cole-Hopf approach [17,19,28,29] (to describe below)
 Hairer’s rough path approach [30-33]

𝜕𝜕
𝜕𝜕𝜕𝜕
𝛿 �⃗�𝑥, 𝑡𝑡 = 𝜈𝜈∇2𝛿 + 𝜆𝜆

2
∇𝛿

2
+ 𝜂𝜂 �⃗�𝑥, 𝑡𝑡

discontinuous
everywhere!

differentiate!
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3.3 Well-definedness of KPZ Equation [17,19,28,29]

KPZ equation

Cole-Hopf transformation:  𝑍𝑍 𝑥𝑥, 𝑡𝑡 ≡ exp 𝜆𝜆
2𝜈𝜈
𝛿 𝑥𝑥, 𝑡𝑡

 If we use the usual chain rule ➜ stochastic heat equation
𝜕𝜕
𝜕𝜕𝜕𝜕
𝑍𝑍 𝑥𝑥, 𝑡𝑡 = 𝜈𝜈∇2𝑍𝑍 𝑥𝑥, 𝑡𝑡 + 𝜆𝜆

2𝜈𝜈
𝑍𝑍 𝑥𝑥, 𝑡𝑡 "×" 𝜂𝜂(𝑥𝑥, 𝑡𝑡)

 Nonlinearity disappears!  ... at the cost of multiplicative noise.
 Various definitions of the multiplicative noise term exist [26]

For 𝑑𝑑𝑑𝑑
𝑑𝑑𝜕𝜕

= 𝐹𝐹 𝑍𝑍, 𝑡𝑡 + 𝐺𝐺(𝑍𝑍, 𝑡𝑡)"×"𝜂𝜂(𝑡𝑡) or 𝑑𝑑𝑍𝑍 = 𝐹𝐹 𝑍𝑍, 𝑡𝑡 𝑑𝑑𝑡𝑡 + 𝐺𝐺 𝑍𝑍, 𝑡𝑡 "×"𝑑𝑑𝐵𝐵(𝑡𝑡)

 Itô product:  𝐺𝐺 𝑍𝑍, 𝑡𝑡 𝑑𝑑𝐵𝐵 𝑡𝑡 ≡ lim
Δ𝜕𝜕→0

𝐺𝐺(𝑍𝑍 𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖)[𝐵𝐵 𝑡𝑡𝑖𝑖+1 − 𝐵𝐵 𝑡𝑡𝑖𝑖 ]

 Stratonovich: 𝐺𝐺 𝑍𝑍, 𝑡𝑡 ∘ 𝑑𝑑𝐵𝐵 𝑡𝑡 ≡ lim
Δ𝜕𝜕→0

𝐺𝐺(𝑑𝑑 𝜕𝜕𝑖𝑖+𝑖𝑖 +𝑑𝑑 𝜕𝜕𝑖𝑖
2

, 𝑡𝑡𝑖𝑖)[𝐵𝐵 𝑡𝑡𝑖𝑖+1 − 𝐵𝐵 𝑡𝑡𝑖𝑖 ]

 The usual chain rule is valid only for the Stratonovich product [26].

𝑑𝑑𝐵𝐵(𝑡𝑡)≡𝐵𝐵 𝑡𝑡+𝑑𝑑𝑡𝑡 −𝐵𝐵(𝑡𝑡)

𝜕𝜕
𝜕𝜕𝜕𝜕
𝛿 �⃗�𝑥, 𝑡𝑡 = 𝜈𝜈∇2𝛿 + 𝜆𝜆

2
∇𝛿

2
+ 𝜂𝜂 �⃗�𝑥, 𝑡𝑡
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𝑥𝑥

Δ𝜅𝜅(𝑥𝑥)

𝜅𝜅

3.3 Well-definedness of KPZ Equation [17,19,28,29]

KPZ equation

 Stochastic heat equation (Stratonovich)
𝜕𝜕
𝜕𝜕𝜕𝜕
𝑍𝑍 𝑥𝑥, 𝑡𝑡 = 𝜈𝜈∇2𝑍𝑍 𝑥𝑥, 𝑡𝑡 + 𝜆𝜆

2𝜈𝜈
𝑍𝑍 𝑥𝑥, 𝑡𝑡 ∘ 𝜂𝜂(𝑥𝑥, 𝑡𝑡)

 Equivalent to the KPZ equation (as is). Ill-defined!

 Let’s consider smoothed noise 𝜂𝜂𝜅𝜅(𝑥𝑥, 𝑡𝑡)
 𝜂𝜂𝜅𝜅 𝑥𝑥, 𝑡𝑡 = 0, 𝜂𝜂𝜅𝜅 𝑥𝑥, 𝑡𝑡 𝜂𝜂𝜅𝜅 𝑥𝑥′, 𝑡𝑡′ = 𝐷𝐷Δ𝜅𝜅 𝑥𝑥 − 𝑥𝑥′ 𝛿𝛿(𝑡𝑡 − 𝑡𝑡′)

 Itô-Stratonovich conversion [26]
𝑍𝑍 𝑥𝑥, 𝑡𝑡 ∘ 𝑑𝑑𝐵𝐵𝜅𝜅 𝑥𝑥, 𝑡𝑡 = 𝑍𝑍 𝑥𝑥, 𝑡𝑡 𝑑𝑑𝐵𝐵𝜅𝜅 𝑥𝑥, 𝑡𝑡 + 1

2
𝑑𝑑𝑍𝑍 𝑥𝑥, 𝑡𝑡 𝑑𝑑𝐵𝐵𝜅𝜅(𝑥𝑥, 𝑡𝑡)

 𝑑𝑑𝑍𝑍 𝑥𝑥, 𝑡𝑡 𝑑𝑑𝐵𝐵𝜅𝜅 𝑥𝑥, 𝑡𝑡 = 𝜆𝜆
2𝜈𝜈

𝑍𝑍 𝑥𝑥, 𝑡𝑡 𝑑𝑑𝐵𝐵𝜅𝜅 𝑥𝑥, 𝑡𝑡 𝑑𝑑𝐵𝐵𝜅𝜅 𝑥𝑥, 𝑡𝑡

 But it’s not too bad... we just have a constant drift ∝ 1
𝜅𝜅
→ ∞

𝜕𝜕
𝜕𝜕𝜕𝜕
𝛿 �⃗�𝑥, 𝑡𝑡 = 𝜈𝜈∇2𝛿 + 𝜆𝜆

2
∇𝛿

2
+ 𝜂𝜂 �⃗�𝑥, 𝑡𝑡

Δ𝜅𝜅(𝑥𝑥) ≡ 1
𝜅𝜅√𝜋𝜋

𝑒𝑒− ⁄𝑥𝑥 𝜅𝜅 2

𝑍𝑍 ≡ 𝑒𝑒
𝜆𝜆
2𝜈𝜈𝜕

= 𝐷𝐷Δ𝜅𝜅 0 𝑑𝑑𝑡𝑡 ∝ ⁄1 𝜅𝜅
𝜅𝜅→0

∞ !
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3.3 Well-definedness of KPZ Equation [17,19,28,29]

KPZ equation

 Stochastic heat equation (Stratonovich)
𝜕𝜕
𝜕𝜕𝜕𝜕
𝑍𝑍 𝑥𝑥, 𝑡𝑡 = 𝜈𝜈∇2𝑍𝑍 𝑥𝑥, 𝑡𝑡 + 𝜆𝜆

2𝜈𝜈
𝑍𝑍 𝑥𝑥, 𝑡𝑡 ∘ 𝜂𝜂(𝑥𝑥, 𝑡𝑡)

 Equivalent to the KPZ equation (as is). Ill-defined!

 Has a constant drift ∝ 1
𝜅𝜅
→ ∞ which doesn’t exist in the Itô form.

 Stochastic heat equation (Itô)
𝜕𝜕
𝜕𝜕𝜕𝜕
𝑍𝑍 𝑥𝑥, 𝑡𝑡 = 𝜈𝜈∇2𝑍𝑍 𝑥𝑥, 𝑡𝑡 + 𝜆𝜆

2𝜈𝜈
𝑍𝑍 𝑥𝑥, 𝑡𝑡 𝜂𝜂 𝑥𝑥, 𝑡𝑡

 Well-defined! (even mathematically) [19,28,29]

 𝛿 𝑥𝑥, 𝑡𝑡 ≔ 2𝜈𝜈
𝜆𝜆

log𝑍𝑍(𝑥𝑥, 𝑡𝑡) : the “solution of the KPZ equation”

𝜕𝜕
𝜕𝜕𝜕𝜕
𝛿 �⃗�𝑥, 𝑡𝑡 = 𝜈𝜈∇2𝛿 + 𝜆𝜆

2
∇𝛿

2
+ 𝜂𝜂 �⃗�𝑥, 𝑡𝑡

𝑍𝑍 ≡ 𝑒𝑒
𝜆𝜆
2𝜈𝜈𝜕



Chapter 4

Experiments on 
KPZ and related interfaces

Main references [34]
(Takeuchi’s survey of experiments 
on KPZ & directed percolation)
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First of All...

KPZ is NOT so often encountered in real world interfaces,
yet more & more examples have been reported recently. [34]

Some nontrivial requirements for KPZ
 Short-range interaction
 Large enough system size
 Short-time memory

Now let’s see actual experiments.

from Barabási & Stanley’s textbook (1995) [11]

Long-range effect may generate 
fractal (not self-affine) patterns 
(e.g, snowflake, viscous fingering)
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Bacteria Colony

E. coli

B. subtilis
wild-type, hard agar
 (region B)

(Vicsek et al. 1990 [36])

(Wakita et al. 1997 [35])

mutant (surfactant -), soft agar
(region D)

from Wakita et al. 1997 [35]

KPZ !
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Cancer-like & Cancer Cell Growth

Experiments by Huergo et al. (2010-14) [9,37-39]

 Colony growth of cancer cells (HeLa) 
& cancer-like cells (Vero) on Petri dish

 Circular and flat geometries
 KPZ exponents were found consistently.

e.g., Vero cell, flat case:

 Earlier, Brú et al. [40,41] claimed the MH class 
(for conserved growth), but data also suggest 
KPZ exponents at longer scales.

 Exponents close to the quenched KPZ found
under methylcellulose-containing medium.

Enlarged cells seem to serve as obstacles.
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Slow combustion (or smoldering) of paper

Zhang et al. 1992 [42]

 Lens cleaning paper
with uniform KNO3 (oxidization aid)

 No regulation of air flow

 Heat loss at boundary

Maunuksela et al. 1997, Myllys et al. 2001 [2,3]

 2 copier papers & lens paper
with uniform KNO3

 Regulated air flow

 Compensation of boundary heat loss

 Many properties of KPZ have been studied 
[2,3,43-46] (see [34] about distribution) 

Paper Combustion

KPZ !
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Coffee Ring (Particle Deposition)

Particle deposition in evaporating colloid (Yunker et al. 2013 [8])

 Water droplet with polystyrene beads

 Controlled aspect ratio ε of beads.
Larger ε ➜ more deformed water surface

➜ more long-ranged interaction
 Three regimes were found.

uncorrelated deposition
KPZ

close to quench KPZ?

due to long-range effect?

[7]
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reagent

reactant

Chemical Reaction in Disordered Medium

Chemical reaction fronts w/ advection & disorder (Atis et al. 2015 [47])



in Hele-Shaw cell filled with bidisperse beads.

 Reaction propagates upward + external flow (up or down)

 Results:

 Mapping to the quenched KPZ eq. is justified by eikonal approximation.

AU

AS

positive QKPZ

negative QKPZ

intrinsic front speed



Chapter 5

Distribution and correlation properties
- stationary & non-stationary cases -

Main references [10]
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4.0 Overview

Some models (including KPZ eq) in the 1D KPZ class
turned out to be exactly solvable.

 Totally asymmetric simple exclusion process (TASEP) (Johansson 2000 [48])

 Polynuclear growth (PNG) model (Prähofer & Spohn 2000 [49])

 Asymmetric simple exclusion process (ASEP) (Tracy & Widom 2009 [50])

 KPZ equation (Sasamoto & Spohn 2010 [29,51], Amir et al. 2011 [52],
Calabrese et al. 2010 [53], Dotsenko 2010 [54])

and many more! (all related to integrability)

Main consequences
 𝛿𝛿𝛿’s distribution & correlation functions were obtained.
 Rich mathematical & theoretical structure (e.g., random matrix theory)
 “Universality subclasses”

different distribution & correlation laws 
depending on the initial condition / the global shape of interface.

See also reviews [10,14,16]
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4.1 PNG Model

 Time evolution
(1) random local nucleation

(at rate 𝜌𝜌 = 1 per unit length, unit time)
(2) deterministic lateral expansion 

(at speed 𝑣𝑣 = 1)

➔ Flat interface is generated.

Circular interface can also be made
if nucleations occur only within 𝑥𝑥 ≤ 𝑡𝑡

 Mean height profile is 
indeed a semi-circle.

Sketch from Hesse & Gross 2014
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4.2 Circular PNG Interface

Nucleations occur only within 𝑥𝑥 ≤ 𝑡𝑡.

Let’s draw a space-time plot! 

𝛿(0, 𝑡𝑡) 
= # of lines to pass 

when moving from (0,0) to (0, 𝑡𝑡)
= max # of dots passed by directed polymer (DP)

btwn points (0,0) & 0, 𝑡𝑡
(point-to-point problem of DP)

= length of longest increasing subsequences
in random permutations of Poisson-distributed length

= … (Young tableau, Robinson-Schensted correspondence) … 
𝜕𝜕→∞

2 𝑆𝑆 + 𝑆𝑆1/6𝜒𝜒GUE = 2𝑡𝑡 + 𝜕𝜕
2

1/3
𝜒𝜒GUE 

nucleation
steps

1
2

3
4

5
6

7
8

12
34

5

67
8

random permutation
r: 1 2 3 4 5 6 7 8
s: 4 7 5 2 8 1 3 6

(Prähofer & Spohn 2000 [49])

◇’s area random variable of “GUE Tracy-Widom distribution”

(Baik et al.,
1999 [55])
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4.3 Tracy-Widom Distribution

e.g.) Gaussian Unitary Ensemble (GUE)

complex 
Hermitian matrix

Gaussian
mean 0 variance N/2

mean 0 variance N

GUE  Tracy-Widom dist.

GOE

GSE

GUE
complex
Hermitian

real
symmetric

quaternion
self-dual

= distribution of the largest eigenvalue of Gaussian random matrices

(Tracy & Widom [56,57];
see also textbooks [58,59])

distribution of all N eigenvalues
(Wigner’s semicircle law)

-2N -N 0 N 2N



40

GOE

GSE
GUE

Some remarks on GUE Tracy-Widom dist.
 Analytic expression using Fredholm determinant

Prob 𝜒𝜒GUE ≤ 𝑠𝑠 = det(1 − 𝑃𝑃𝑠𝑠𝐾𝐾Ai𝑃𝑃𝑠𝑠)
𝑃𝑃𝑠𝑠: projection onto [𝑠𝑠,∞)
𝐾𝐾Ai 𝑥𝑥,𝑦𝑦 ≡ ∫0

∞𝑑𝑑𝜆𝜆Ai 𝑥𝑥+𝜆𝜆 Ai(𝑦𝑦+𝜆𝜆) : Airy kernel
det: Fredholm determinant,

(see [60,61] for numerical evaluation of Fredholm determinant)

 Another expression using Painlevé II equation [62]
𝑑𝑑2𝑢𝑢
𝑑𝑑𝑥𝑥2

= 2𝑢𝑢 𝑥𝑥 3 + 𝑥𝑥𝑢𝑢(𝑥𝑥)
with its global positive solution 𝑢𝑢(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) s.t.𝑔𝑔′′ 𝑥𝑥 = 𝑢𝑢 𝑥𝑥 2,𝑔𝑔 𝑥𝑥

𝑥𝑥→∞
0 ,

Prob 𝜒𝜒GUE ≤ 𝑠𝑠 = 𝑒𝑒−𝑔𝑔(𝑠𝑠)

 For users:
 Prähofer & Spohn’s numerical table [63]
 Mathematica 

4.3 Tracy-Widom Distribution
(Tracy & Widom [56,57];
see also textbooks [58,59])

※ Mathematica’s 
GSE TW seems 
to be wrong
(thx to Y. Ito on this)

Mathematica
(using [57])

correct one, 
multiplying 𝜒𝜒 by 2−1/6
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4.4 Flat PNG Interface

PNG circular interfaces
Nucleations restricted to 𝑥𝑥 ≤ 𝑡𝑡

Consider a square set by (0,0) & (0, 𝑡𝑡)
“point-to-point directed polymer”

PNG flat interfaces
No constraint on nucleations

Consider a triangle set by 𝑡𝑡 = 0 & (0, 𝑡𝑡)
“line-to-point directed polymer”

Equivalent to square / point-to-point problem,
but with time-reversal symmetry

Different geometries (or initial conditions) lead to different symmetries.
KPZ class splits into a few “universality subclasses.

mirror image

circular

flat

GOE

GUE

mirror image

(Prähofer & Spohn 2000 [49])

(precisely, χGOEKPZ = 2−2/3χGOERMT)
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4.5 Stationary PNG Interface

Quantity of interest:
height difference 
between two times in the stationary state
𝛿 0, 𝑡𝑡0 + 𝑡𝑡 − 𝛿 0, 𝑡𝑡0  

 In PNG space-time plot

(Prähofer & Spohn 2000 [49])

time 𝑡𝑡0

time 𝑡𝑡0 + t

↑by setting 𝑡𝑡0 = 0, 𝛿 0,0 = 0
= 𝛿(0, 𝑡𝑡) 

Stationary PNG problem
= circular PNG + extra nucl’s on 𝑟𝑟, 𝑠𝑠 axes

Boundary nucleation rate 𝑝𝑝±?
• 𝑝𝑝± = 2 × (step density, )
• Nucleation-annihilation balance

➜ 𝑝𝑝± = 1𝑝𝑝+𝑝𝑝−
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4.5 Stationary PNG Interface

Stationary PNG = Circular PNG + Boundary nucleations

𝑙𝑙 is determined by the leading terms:

𝑙𝑙max = argmax 2 𝑆𝑆 𝑙𝑙 + 𝑝𝑝±𝑙𝑙 = 𝜕𝜕
2

1 − 1
𝑝𝑝±
2

 𝑝𝑝± < 1 ➜ bulk dominant, GUE Tracy-Widom
 𝑝𝑝+ or 𝑝𝑝− > 1 ➜ boundary dominant, Gaussian (if 𝑝𝑝+ ≠ 𝑝𝑝−)
 𝑝𝑝± = 1 ➜ critical, Baik-Rains distribution [50]

Baik-Rains distribution [64,49] 
 No known link to random matrix.
 Definition using Painlevé II: 

Prob 𝜒𝜒BR ≤ 𝑠𝑠 = 1 − 𝑠𝑠 + 2𝑓𝑓′′ 𝑠𝑠 + 2𝑔𝑔′′ 𝑠𝑠 𝑔𝑔′ 𝑠𝑠 𝑒𝑒−2𝑓𝑓 𝑠𝑠 −𝑔𝑔(𝑠𝑠) 

(Prähofer & Spohn 2000 [49])

𝛿 = max
𝑙𝑙,±

[𝛿bulk 𝑙𝑙 + 𝛿±(𝑙𝑙)]

𝛿bulk 𝑙𝑙 ≃ 2 𝑆𝑆 𝑙𝑙 + 𝑆𝑆 𝑙𝑙 ⁄1 6𝜒𝜒GUE,

𝛿± 𝑙𝑙 ≃ 𝑝𝑝±𝑙𝑙 + 𝑝𝑝±𝑙𝑙
⁄1 2𝜒𝜒Gauss 

dist. for stationary PNG!

↓𝑓𝑓 𝑥𝑥  s.t. 𝑓𝑓′ 𝑥𝑥 = −𝑢𝑢(𝑥𝑥) and 𝑓𝑓(𝑥𝑥)
𝑥𝑥→∞

0; see p.40 for 𝑔𝑔

with
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4.6 Universality Subclasses

These are believed to be universal in the 1D KPZ class
though mathematical evidence can only be obtained for 
integrable models.

Let’s see how they appear in other (integrable) models.

Circular Flat Stationary

exponents 𝛼𝛼 = ⁄1 2 ,𝛽𝛽 = ⁄1 3 , 𝑧𝑧 = ⁄3 2 (common for all subclasses)

distribution GUE Tracy-Widom GOE Tracy-Widom Baik-Rains
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4.7 Asymmetric Simple Exclusion Process (ASEP) 

 Lattice model of stochastic particle transport
 Asymmetric hopping rates: 𝑝𝑝 < 𝑞𝑞

(particles hop preferentially to right)
 Volume exclusion (no particle overlap)

 Integrable model (see reviews [65,66])

Mapped to interface growth model.
KPZ universality class.

circular:
step initial condition

flat:
alternating IC

stationary:
Bernoulli IC

The three universality subclasses

Characteristic distributions were proved,
especially for totally ASEP (𝑝𝑝 = 0) [14,16]
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4.8 KPZ Equation
1D KPZ equation (coefficients fixed, w/o loss of generality)

stochastic heat equation

= -(DP free energy)

Cole-Hopf transformation

directed polymer (DP)’s partition function

polymer elasticity random potential

path integral (Feynman-Kac formula)

top end: fixed at (x,t)

random
potential

bottom end: dist’d by 𝑍𝑍(𝑥𝑥, 0)

𝜂𝜂𝜅𝜅(𝑥𝑥, 𝑡𝑡): spatially correlated noise
𝜂𝜂𝜅𝜅 𝑥𝑥, 𝑡𝑡 = 0, 𝜂𝜂𝜅𝜅 𝑥𝑥, 𝑡𝑡 𝜂𝜂𝜅𝜅 𝑥𝑥′, 𝑡𝑡′ = 𝐷𝐷Δ𝜅𝜅 𝑥𝑥 − 𝑥𝑥′ 𝛿𝛿(𝑡𝑡 − 𝑡𝑡′)

(see, e.g., review [10])

𝑥𝑥

Δ𝜅𝜅(𝑥𝑥)

𝜅𝜅
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4.8 KPZ Equation
directed polymer (DP)’s partition function

Let’s consider 𝑁𝑁th-order moment

(see, e.g., review [10])

with 𝜂𝜂𝑛𝑛 ≡ 𝜂𝜂𝜅𝜅(𝑥𝑥𝑛𝑛 𝜏𝜏 , 𝜏𝜏),

← Gauss integral
over 𝜂𝜂𝑛𝑛

applying the Feynman-Kac formula in the other way

with

white noise limit 𝜅𝜅 → 0
attractive Lieb-Liniger model 
(quantum integrable model of 𝑁𝑁 bosons)
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4.8 KPZ Equation (Recapped)
1D KPZ equation (coefficients fixed, w/o loss of generality)

stochastic heat equation

height = -(DP free energy)

Cole-Hopf transformation

directed polymer (DP)’s partition function

polymer elasticity random potential

path integral (Feynman-Kac formula)

for 𝑁𝑁th-order moment

𝑁𝑁-body bosons (attractive Lieb-Liniger model, quantum integrable model)

top end: fixed at (x,t)

random
potential

bottom end: dist’d by 𝑍𝑍(𝑥𝑥, 0)

𝜂𝜂(𝑥𝑥, 𝑡𝑡): white Gaussian noise

(see, e.g., review [10])
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4.8 KPZ Equation

 Recap: interface 𝛿(𝑥𝑥, 𝑡𝑡) ⇔ polymer part. func. 𝑍𝑍 𝑥𝑥, 𝑡𝑡 = 𝑒𝑒𝜕 ⇔ bosons 

 Initial conditions?

top end: fixed at a point

random
potential

bottom end: 
dist’d by 𝑍𝑍 𝑥𝑥, 0 = 𝛿𝛿(𝑥𝑥) → fixed at (0,0)

polymer picture

circular case
𝛿 𝑥𝑥, 0 = −𝜅𝜅|𝑥𝑥|
𝑍𝑍 𝑥𝑥, 0 = 𝑒𝑒𝜕 𝑥𝑥,0 𝜅𝜅→∞

𝛿𝛿 𝑥𝑥

circular = “point-to-point problem”
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KPZ eq attractive Lieb-Liniger model

We need

Bethe Ansatz:

For the attractive LL model:

Particles form “strings” (jth string has Mj particles)

: permutation
: (quasi)momentum

Airy kernel of  Tracy-Widom dist.

: eigenstate

e.g.) N=9 particles, J=3 strings

initial condition for circular case

4.8 KPZ Equation Calabrese et al. 2010 [53]
Dotsenko 2010 [54]

※ So this is non-rigorous. [29,51,52] are rigorous.

diverging, but...
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4.8 KPZ Equation

 Recap: interface 𝛿(𝑥𝑥, 𝑡𝑡) ⇔ polymer part. func. 𝑍𝑍 𝑥𝑥, 𝑡𝑡 = 𝑒𝑒𝜕 ⇔ bosons 
 Universality subclasses?

top end: fixed at a point

random
potential

bottom end: 
dist’d by 𝑍𝑍 𝑥𝑥, 0 = 𝛿𝛿(0) → fixed at (0,0)

polymer picture

circular case
𝛿 𝑥𝑥, 0 = −𝜅𝜅|𝑥𝑥|
𝑍𝑍 𝑥𝑥, 0 = 𝑒𝑒𝜕 𝑥𝑥,0 𝜅𝜅→∞

𝛿𝛿 𝑥𝑥

flat case
𝛿 𝑥𝑥, 0 = 0
𝑍𝑍 𝑥𝑥, 0 = 𝑒𝑒𝜕 𝑥𝑥,0 = const 

circular = “point-to-point problem”
(➜ GUE Tracy-Widom [53,54])

top end: fixed at a point

bottom end: uniformly distributed

polymer picture

flat = “line-to-point problem”
(➜ GOE Tracy-Widom [67])
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4.9 Height Rescaling  [10,13,68,69]

How to compare 𝛿(𝑥𝑥, 𝑡𝑡) & universal distribution variable 𝜒𝜒?

 Growth law:  𝛿 𝑥𝑥, 𝑡𝑡 ≃ 𝑣𝑣∞𝑡𝑡 + Γ𝑡𝑡 ⁄1 3𝜒𝜒 𝑥𝑥
𝜉𝜉 𝜕𝜕

with corr. length 𝜉𝜉 𝑡𝑡

 Stationary Brownian profile:  𝐶𝐶𝜕 ℓ, 𝑡𝑡 ≡ 𝛿 𝑥𝑥 + ℓ, 𝑡𝑡 − 𝛿 𝑥𝑥, 𝑡𝑡 2 ≃ 𝐴𝐴ℓ

 KPZ nonlinearity:  𝜆𝜆 = lim
𝑢𝑢→0

𝑑𝑑2

𝑑𝑑𝑢𝑢2
𝑣𝑣∞(𝑢𝑢) with mean slope 𝑢𝑢 = ∇𝛿

For isotropic growth, we have 𝑣𝑣∞ 𝑢𝑢 = 1 + 𝑢𝑢2𝑣𝑣∞ ∴ 𝜆𝜆 = 𝑣𝑣∞ (isotropic)

Then,  Γ = 1
2
𝐴𝐴2𝜆𝜆, 𝜉𝜉 𝑡𝑡 = 2

𝐴𝐴
Γ𝑡𝑡 −2/3 [10,69]

Circular Flat Stationary

exponents 𝛼𝛼 = ⁄1 2 ,𝛽𝛽 = ⁄1 3 , 𝑧𝑧 = ⁄3 2 (common for all subclasses)

distribution GUE Tracy-Widom GOE Tracy-Widom Baik-Rains
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What about correlation properties?

Limiting stochastic process, “Airy process” 𝒜𝒜𝑖𝑖(𝑡𝑡) (review [73]),
describe spatial profiles of circular/flat interfaces

𝜒𝜒 𝑥𝑥
𝜉𝜉 𝜕𝜕

→ �𝒜𝒜2 𝜏𝜏 − 𝜏𝜏2 (circ. )
𝒜𝒜1 𝜏𝜏 flat

with 𝜏𝜏 ≡ 𝑥𝑥/𝜉𝜉(𝑡𝑡),  𝜉𝜉(𝑡𝑡) corr. length
※convention for Airy1 may differ [10].

Determinantal formulae obtained [70-73].
∴ Spatial correlation properties are known.
e.g., 𝑛𝑛-point correlation ⟨𝛿 𝑥𝑥1, 𝑡𝑡 𝛿 𝑥𝑥2, 𝑡𝑡 ⋯𝛿 𝑥𝑥𝑛𝑛, 𝑡𝑡 ⟩

4.10 Correlation Properties

Circular Flat Stationary

Exponents 𝛼𝛼 = ⁄1 2 ,𝛽𝛽 = ⁄1 3 , 𝑧𝑧 = ⁄3 2 (common for all subclasses)

Distribution GUE Tracy-Widom GOE Tracy-Widom Baik-Rains

Limiting process
for spatial profile

Airy2 process [70,71]
𝒜𝒜2(𝜏𝜏)

Airy1 process [72]
𝒜𝒜1(𝜏𝜏)

Brownian motion
𝐵𝐵(𝜏𝜏)

Circular Flat Stationary

exponents 𝛼𝛼 = ⁄1 2 ,𝛽𝛽 = ⁄1 3 , 𝑧𝑧 = ⁄3 2 (common for all subclasses)

distribution GUE Tracy-Widom GOE Tracy-Widom Baik-Rains

𝛿(𝑥𝑥, 𝑡𝑡)

𝜏𝜏
𝒜𝒜𝑖𝑖(𝜏𝜏)

rescaled
height
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4.10.1 Airy2 Process for Circular Case [70,71,73]

Airy2 process 
= Top eigenvalue of Dyson’s Brownian motion for GUE matrices

Alternatively, consider
Ornstein-Uhlenbeck process
𝑑𝑑𝐴𝐴
𝑑𝑑𝜕𝜕

= −𝐴𝐴(𝑡𝑡) + Ξ(𝑡𝑡) 

Ξ𝑖𝑖𝑗𝑗 𝑡𝑡 Ξ𝑖𝑖𝑗𝑗 𝑡𝑡 = �2𝑁𝑁𝛿𝛿 𝑡𝑡 − 𝑡𝑡′ (𝑖𝑖 = 𝑗𝑗)
𝑁𝑁𝛿𝛿 𝑡𝑡 − 𝑡𝑡′ (𝑖𝑖 ≠ 𝑗𝑗) 

Then,  𝑁𝑁−1/3 𝜆𝜆max
𝜏𝜏

𝑁𝑁 ⁄1 3 − 2𝑁𝑁 → 𝒜𝒜2(𝜏𝜏)

eigenvalues: 

• Each 𝐴𝐴𝑖𝑖𝑗𝑗 𝑡𝑡 = 𝑎𝑎𝑖𝑖𝑗𝑗 𝑡𝑡 + i𝑏𝑏𝑖𝑖𝑗𝑗(𝑡𝑡)
does independent Brownian motion.

• Then, 𝜆𝜆𝑖𝑖 𝑡𝑡 ∼ 𝑁𝑁 𝑡𝑡
1st eigenvalue = Airy2 process
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4.10.2 Airy1 Process for Flat Case

Airy1 process 
= Top eigenvalue of Dyson’s Brownian motion for GOE?
 

No!
Numerical evaluation of determinantal formulae 

for the 2-point function 𝑔𝑔𝑖𝑖 𝑢𝑢 ≡ ⟨𝒜𝒜𝑖𝑖 𝜏𝜏 + 𝑢𝑢 𝒜𝒜𝑖𝑖 𝜏𝜏 ⟩ [74]

Airy2 vs GUE Airy1 vs GOE

Theoretically,  𝑔𝑔2 𝑢𝑢 ∼ 𝑢𝑢−2 [74,75] 𝑔𝑔1 𝑢𝑢 ∼ exp −1
3
𝑢𝑢3 [76]

power-law decay super-exponential decay!
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Chapter 6

Experimental test of distribution 
and correlation properties

Main references [6,10]

Reminder:
Universality in distribution & correlation properties was checked
only for integrable models. 
What about non-integrable systems?
Are these robust enough to arise in real phenomena?
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Liquid-Crystal Experiment

Convection of nematic liquid crystal
driven by electric field
thanks to nematic anisotropy of electric properties

Two turbulent states at high enough 𝑉𝑉
Metastable: DSM1 = defect-less turbulence
Stable: DSM2 = defect-filled turbulence

Growing DSM2 interfaces!

Topological defect lines
in nematic director field

Speed x2, 200 µm35V, 250Hz

DSM1
(metastable)DSM2

(stable)

(homeotropic alignment)

liquid crystal MBBA
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DSM2 = Topological Defect Turbulence

Direct visualization of defect lines in relaxation from DSM2
(Zushi & Takeuchi, PNAS 2022 [77]

arXiv 2024 [78]) 

reconnections of defect lines

and in DSM2 turbulence!
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photo-isomerization of MBBA
trans cis

Trigger the Growth

Used UV laser to generate DSM2
 Growth starts at target position & time
 Can design the initial shape!

Speed x5,

will shoot
UV laser here

We generated both circular and flat interfaces (~1000 times)
and studied interface fluctuations

local radius
h(x,t)

x

δh

local height
h(x,t)

x
δh

nematic order reduced
topological defects (DSM2) generated!
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circular flat

h

h

Height distribution

rescaled height 𝑞𝑞 ≡ 𝜕−𝑣𝑣∞𝜕𝜕
Γ𝜕𝜕 1/3

Exponent & Distribution

• Both circular & flat cases show the same KPZ exponent (∴ KPZ class)
• Tracy-Widom distributions appeared! They are robust in experiments too!
circular ⇒ GUE Tracy-Widom (TW) distribution flat ⇒ GOE TW dist.

circular flat

fluctuation amplitude

1D KPZ exponent

circular : 
flat :

: rescaled variable
: parameters
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More Quantitatively...

Key quantity:  nth-order cumulant

skewness= 
kurtosis =
(both zero for Gaussian)

kurtosis > 0

kurtosis < 0
Gauss

Quantitative agreement with Tracy-Widom!
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Finite Time Effect

Measured rescaled height

h

h

circular flat

GUE
TW dist.

GOE
TW dist

Height distribution
(after finite-t correction)

rescaled height

pr
ob

. d
en

si
ty

rescaled height

pr
ob

ab
ili

ty
 d

en
si

ty

1st order

2nd-4th order

slope -1/3

Difference from TW distribution

approaching
with 𝑡𝑡

circular case, at finite 𝑡𝑡

• Quantitative agreement with Tracy-Widom!
• KPZ eq approaches TW from left [29,79]. It does NOT describe this experiment!
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Spatial Correlation

𝐶𝐶𝑠𝑠 ℓ, 𝑡𝑡 ≡ ⟨𝛿𝛿𝛿 𝑥𝑥 + ℓ, 𝑡𝑡 𝛿𝛿𝛿 𝑥𝑥, 𝑡𝑡 ⟩  with 𝛿𝛿𝛿 𝑥𝑥, 𝑡𝑡 ≡ 𝛿 − ⟨𝛿⟩

≃ Γ𝑡𝑡 ⁄2 3𝑔𝑔𝑖𝑖
ℓ

𝜉𝜉 𝜕𝜕
with Airy 2pt correlation 𝑔𝑔𝑖𝑖

?

Correlation of flat / circular interfaces
is governed by the Airy1 / Airy2 process

rescaled length

Two-point correlation function

circular = Airy2

flat = Airy1
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Time Correlation: from Exp’t to Theory

Time correlation
(theoretically more difficult & less understood)

circularflat

decays
very slowly...?
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Time corr.

Time Correlation: from Exp’t to Theory

experiment

flat

circular

different symbols
= different t1

dimensionless time increment

theory

2-time problem = 2-polymer problem
circ. = pt-to-pt flat = line-to-pt

polymers overlap → correlation persists!

Approximate analytic solution 
was also obtained by mapping to bosons.
(see also variational approaches [81,82])

Later, 2-time correlation in circular case was 
solved mathematically & became a theorem.

(Johansson 2019 [83], Johansson & Rahman 2021 [84])

De Nardis (left)
Le Doussal (right)
Takeuchi, 2017 [80]
(see also Ferrari
& Spohn 2016 [81])

correlation
persists!

[6,80]
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We can now design the initial shape arbitrarily by laser holographic technique!

Exploring More Various Geometries

system

UV laser

imaging lens
Fukai & Takeuchi, PRL 2017 [85]

realized KPZ stationary state
(by generating, instead of waiting)

stationary 2pt corr. func.

𝑓𝑓KPZ(𝑦𝑦)

Iwatsuka et al. PRL 2020 [86]

circular:
GUE TW flat: GOE TW

rescaled height

pr
ob

. d
en

si
ty

Stationary: Baik-Rains dist.

“KPZ” initial condition
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Chapter 7

Distribution properties for general 
cases and variational formula
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We can now design the initial shape arbitrarily by laser holographic technique!

 What distribution properties for such general initial conditions?
 Is there any transition/crossover between subclasses?

➜ Powerful theoretical tool “variational formula” was proposed. [73]

Exploring More Various Geometries

system

UV laser

imaging lens
Fukai & Takeuchi, PRL 2017 [85]

“KPZ” initial condition
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random
potential

Variational Formula

 Recall the directed polymer picture of KPZ eq.
Circular case: 𝑍𝑍 𝑥𝑥, 0 = 𝛿𝛿(𝑥𝑥) ➜ 𝑍𝑍(𝑥𝑥, 𝑡𝑡) obtained.

 𝑍𝑍 𝑥𝑥, 𝑡𝑡 ≈ ∫ 𝑑𝑑𝑦𝑦 𝑍𝑍 𝑦𝑦, 0 𝑍𝑍circ(𝑥𝑥 − 𝑦𝑦, 𝑡𝑡)


 Graphical interpretation: “KPZ Huygens principle”

 Method of numerical evaluation developed (Fukai & Takeuchi PRL 2020 [87]) 

Green function!

Envelope = 𝛿(𝑥𝑥, 𝑡𝑡) 
(only 1pt dist)

𝛿 𝑥𝑥, 𝑡𝑡 ≃ sup
𝑦𝑦

[𝛿circ 𝑥𝑥 − 𝑦𝑦, 𝑡𝑡 + 𝛿0(𝑦𝑦)] with 𝛿0 𝑦𝑦 ≡ 𝛿(𝑦𝑦, 0)

𝜒𝜒 𝑋𝑋, 𝑡𝑡 ≃ sup
𝑌𝑌

[𝒜𝒜2 𝑋𝑋 − 𝑌𝑌 − 𝑋𝑋 − 𝑌𝑌 2 +
𝛿0 𝜉𝜉 𝑡𝑡 𝑌𝑌
Γ𝑡𝑡 ⁄1 3 ]

variational
formula 
[73]

1pt

1pt

1pt
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0

circular interfaceflat interface

initial 
curv.

Beyond Circular & Flat Limiting Cases

 Circular interface
 Flat interface

positive curvaturenegative curvature

out-growingin-growing

initially point nucleus, curvature = 
initially straight line, curvature = 0

What happens for general initial curvature?

How to study?

 laser holography to generate an arbitrary initial condition.
 In-growing = flat statistics, then collapse [85]. How about out-growing case?

(Fukai & Takeuchi 2017 [85], 2020 [87])
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Results

rescaled height : circ.
: flat

mean

variance

KPZ height

(flat subclass)

(circ. subclass)

(flat subclass)

(circ. subclass)

collapse
w/ rescaled time experiment

exp’t

Eden numerics

flat-to-circ.
crossover 

found!

universality
of crossover 
functions!

(Fukai & Takeuchi PRL 2020 [87])
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Theoretical Account by Variational Formula

The variational formula

here, 𝛿0 𝑥𝑥 = 𝑅𝑅0𝑔𝑔
𝑥𝑥
𝑅𝑅0

with 𝑔𝑔 𝑤𝑤 ≃ 1 − 1
2
𝑤𝑤2

(Fukai & Takeuchi PRL 2020 [87])

𝜒𝜒 𝑋𝑋, 𝑡𝑡 ≃ sup
𝑌𝑌

[𝒜𝒜2 𝑋𝑋 − 𝑌𝑌 − 𝑋𝑋 − 𝑌𝑌 2 +
𝛿0 𝜉𝜉 𝑡𝑡 𝑌𝑌
Γ𝑡𝑡 ⁄1 3 ]

∴ 𝜒𝜒 0, 𝑡𝑡 ≃ sup
𝑌𝑌

𝒜𝒜2 𝑌𝑌 − 1 +
𝜉𝜉 𝑡𝑡 2

2𝑅𝑅0 Γ𝑡𝑡 1/3 𝑌𝑌2

≃ sup
𝑌𝑌

𝒜𝒜2 𝑌𝑌 − 1 + 𝜏𝜏 𝑌𝑌2 ∵ 𝜉𝜉 = 2 Γ𝜕𝜕 ⁄2 3

𝐴𝐴
, Γ = 1

2
𝐴𝐴2𝑣𝑣∞, 𝜏𝜏 = 𝑣𝑣∞𝜕𝜕

𝑅𝑅0

𝜒𝜒 0, 𝑡𝑡 → ∞ ≃ 𝒜𝒜2(0) = 𝜒𝜒GUE

𝜒𝜒 0, 𝑡𝑡 → 0 ≃ sup
𝑌𝑌

𝒜𝒜2 𝑌𝑌 − 𝑌𝑌2

= 𝜒𝜒GOE [71,88] numerical eval of
variational formula

exp’t

Variational formula fully accounts
for the flat-circular crossover!

1pt
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As a Final Remark...

1869 Discovery of liquid-vapor
critical point (which is Ising)

1890’s- 𝛽𝛽 ≈ 0.3-0.4
(cf. 3D Ising 𝛽𝛽 ≈ 0.326)

1944 Onsager’s solution to 2D Ising

1950’s- Experiments on binary fluids
& Ising-type magnets

1971 Wilson’s renormalization group,
φ4 model (continuum equation) 
“Ising universality class”

1984 2D conformal field theory
classifying universality classes

2011- Conformal approach to 3D Ising

1980’s Scaling laws for discrete
models of interface growth

1986 KPZ eq. (continuum eq.)

1997 Experiments on KPZ exponents

2000 Exact solutions
to 1D discrete models

2010 Experiment on exact results

2010 Exact solutions to 1D KPZ eq.

2017 Discussion started on relation to 
isotropic Heisenberg spin chain

2019 KPZ corr. func. in Heisenberg

2021-22 Exp’ts on KPZ-Heisenberg link

… … … …

Equilibrium (major player: Ising) Non-eq (major player: KPZ?)

Can we expect as glorious breakthroughs for KPZ?  Even more surprises?
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As a Final Remark...

Can we expect as glorious breakthroughs for KPZ?  Even more surprises?

Another perspective:
A strongly correlated version
of the Central Limit Theorem?

Corwin’s review 2016 [89]

higher dimension?
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