Local conserved charges of Floquet XXX circuit

$$
\begin{aligned}
& Q_{1}^{+}=\sum_{n=1}^{N / 2} q_{2 n-2,2 n-1,2 n}^{[1,+]}, \quad Q_{1}^{-}=\sum_{n=1}^{N / 2} q_{2 n-1,2 n, 2 n+1}^{[1,-]} \\
& q_{1,2,3}^{[1, \pm]}=\frac{i}{2\left(1+\delta^{2}\right)}\left[\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}+\boldsymbol{\sigma}_{2} \cdot \boldsymbol{\sigma}_{3}+\delta^{2} \boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{3} \mp \delta \boldsymbol{\sigma}_{1} \cdot\left(\boldsymbol{\sigma}_{2} \times \boldsymbol{\sigma}_{3}\right)\right] \\
& Q_{2}^{+}=\sum_{n=1}^{N / 2} q_{22 n-2,2 n-1,2 n, 2 n+1,2 n+2}^{[2,+]}, \quad Q_{2}^{-}=\sum_{n=1}^{N / 2} q_{2 n-1,2 n, 2 n+1,2 n+2,2 n+3}^{[2,-]} \\
& q_{1,2,3,4,5}^{[2, \pm]}=\frac{i}{2\left(1+\delta^{2}\right)^{2}}\left[\mp 2 \delta \boldsymbol{\sigma}_{3} \cdot \boldsymbol{\sigma}_{4} \mp 2 \delta \boldsymbol{\sigma}_{4} \cdot \boldsymbol{\sigma}_{5}\right. \\
& \pm 2 \delta \boldsymbol{\sigma}_{3} \cdot \boldsymbol{\sigma}_{5}-\left(1-\delta^{2}\right) \boldsymbol{\sigma}_{3} \cdot\left(\boldsymbol{\sigma}_{4} \times \boldsymbol{\sigma}_{5}\right)-\boldsymbol{\sigma}_{2} \cdot\left(\boldsymbol{\sigma}_{3} \times \boldsymbol{\sigma}_{4}\right) \\
& -\delta^{2} \boldsymbol{\sigma}_{2} \cdot\left(\boldsymbol{\sigma}_{3} \times \boldsymbol{\sigma}_{5}\right)-\delta^{2} \boldsymbol{\sigma}_{1} \cdot\left(\boldsymbol{\sigma}_{3} \times \boldsymbol{\sigma}_{4}\right) \\
& -\delta^{4} \boldsymbol{\sigma}_{1} \cdot\left(\boldsymbol{\sigma}_{3} \times \boldsymbol{\sigma}_{5}\right) \pm \delta \boldsymbol{\sigma}_{2} \cdot\left(\boldsymbol{\sigma}_{3} \times \boldsymbol{\sigma}_{4} \times \boldsymbol{\sigma}_{5}\right) \\
& \pm \delta \boldsymbol{\sigma}_{1} \cdot\left(\boldsymbol{\sigma}_{2} \times \boldsymbol{\sigma}_{3} \times \boldsymbol{\sigma}_{4}\right) \pm \delta^{3} \boldsymbol{\sigma}_{1} \cdot\left(\boldsymbol{\sigma}_{3} \times \boldsymbol{\sigma}_{4} \times \boldsymbol{\sigma}_{5}\right) \\
& \left. \pm \delta^{3} \boldsymbol{\sigma}_{1} \cdot\left(\boldsymbol{\sigma}_{2} \times \boldsymbol{\sigma}_{3} \times \boldsymbol{\sigma}_{5}\right)-\delta^{2} \boldsymbol{\sigma}_{1} \cdot\left(\boldsymbol{\sigma}_{2} \times \boldsymbol{\sigma}_{3} \times \boldsymbol{\sigma}_{4} \times \boldsymbol{\sigma}_{5}\right)\right] .
\end{aligned}
$$

NESS of boundary driven XXZ chain

- For $|\Delta|<1,\langle J\rangle \sim n^{0}$ (ballistic)
- For $|\Delta|>1,\langle J\rangle \sim \exp (-$ constn) (insulating)
- For $|\Delta|=1,\langle J\rangle \sim n^{-2}$ (anomalous)

2-point correlation function in NESS

Fractal spin Drude weight

Fractal Mazur bound on Drude weight

$$
\frac{D}{\beta} \geq D_{Z}:=\frac{\sin ^{2}(\pi I / m)}{\sin ^{2}(\pi / m)}\left(1-\frac{m}{2 \pi} \sin \left(\frac{2 \pi}{m}\right)\right), \quad \Delta=\cos \left(\frac{\pi I}{m}\right)
$$

TP PRL 106 (2011); TP, Ilievski, PRL 111 (2013); TP, NPB 886 (2014); Ilievski, De Nardis, PRL 119 (2017)

Fractal Drude weight in Floquet XXZ chains

[M. Vanicat, L. Zadnik and TP, PRL 121, 030606(2018)]
[M. Ljubotina, L. Zadnik and TP, PRL 122, 150605(2019)]

$$
U=\exp \left(-i \mathcal{J}\left(\sigma^{\mathrm{x}} \otimes \sigma^{\mathrm{x}}+\sigma^{\mathrm{y}} \otimes \sigma^{\mathrm{y}}\right)-i \mathcal{J}^{\prime} \sigma^{\mathrm{z}} \otimes \sigma^{\mathrm{z}}\right)
$$

Integrability structure recently nicely demonstrated on a NISQ device!

[Google Quantum AI, arXiv:2206.05254], see also [I. Aleiner, Ann. Phys. 433, 168593(2021)]

ARTICLE

Received 1 Mar 2017 | Accepted 30 May 2017 | Published 13 Jul 2017 Dot 10.1039/ncomme16117 OPEN
Spin diffusion from an inhomogeneous quench in an integrable system
Marko Ljubotina ${ }^{1}$, Marko Žnidarič̀ \& Tomaž Prosen ${ }^{1}$

$$
\begin{aligned}
H & =\sum_{j=1}^{L}\left(\sigma_{j}^{x} \sigma_{j+1}^{x}+\sigma_{j}^{y} \sigma_{j+1}^{y}+\Delta \sigma_{j}^{z} \sigma_{j+1}^{z}\right) \\
\rho(t & =0)=\left(\mathbb{1}+\mu \sigma^{z}\right)^{\otimes L / 2} \otimes\left(\mathbb{1}-\mu \sigma^{z}\right)^{\otimes L / 2}
\end{aligned}
$$

b

$$
\Delta s^{z}(t)=\int_{0}^{t} \mathrm{~d} t^{\prime} j\left(x=L / 2, t^{\prime}\right) \propto t^{\alpha}
$$

First data came from boundary driven Lindblad XXX chain
[Žnidarič, PRL (2011)]

Kardar-Parisi-Zhang Physics in the Quantum Heisenberg Magnet

Physics Department, Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia

$$
\text { (0) (Received } 7 \text { March 2019; published } 31 \text { May 2019) }
$$

Equilibrium spatiotemporal correlation functions are central to understanding weak nonequilibrium physics. In certain local one-dimensional classical systems with three conservation laws they show universal features. Namely, fluctuations around ballistically propagating sound modes can be described by universal features. Namely, fluctuations around ballistically propagating sound modes can be described by
the celebrated Kardar-Parisi-Zhang (KPZ) universality class. Can such a universality class be found also in quantum systems? By unambiguously demonstrating that the KPZ scaling function describes magnetization dynamics in the $S U(2)$ symmetric Heisenberg spin chain we show, for the first time, that this is so. We achieve that by introducing new theoretical and numerical tools, and make a puzzling observation that the conservation of energy does not seem to matter for the KPZ physics.

Continuous

Experiments (cold atoms):
D. Wei, A. Rubio-Abadal, B. Ye, F. Machado, J. Kemp, K. Srakaew, S. Hollerith, J. Rui, S. Gopalakrishnan, N. Yao, I. Bloch, J. Zeiher, Science (2022)

B Spin chain
00 Measured $|\uparrow\rangle$ occupation
Image of $|\uparrow\rangle$ atoms

Experiments (solid state, neutron scattering):
A. Scheie, N. E. Sherman, M. Dupont, S. E. Nagler, M. B. Stone,
G. E. Granroth, J. E. Moore, D. A. Tennant, Nature Phys. (2021)

Transport and full counting in XXX/XXZ circuits on Sycamore chip [Google Quantum Al and collaborators, Science 2024]
A

Spin transport in classical SO(3) symmetric integrable

 symplectic lattice gas$\Phi_{\tau}\left(\mathbf{S}_{1}, \mathbf{S}_{2}\right)=\frac{1}{\sigma^{2}+\tau^{2}}\left(\sigma^{2} \mathbf{S}_{1}+\tau^{2} \mathbf{S}_{2}+\tau \mathbf{S}_{1} \times \mathbf{S}_{2}, \sigma^{2} \mathbf{S}_{2}+\tau^{2} \mathbf{S}_{1}+\tau \mathbf{S}_{2} \times \mathbf{S}_{1}\right)$
$\left(\mathbf{S}_{2 x}^{2 t+1}, \mathbf{S}_{2 x+1}^{2 t+1}\right)=\Phi_{\tau}\left(\mathbf{S}_{2 x}^{2 t}, \mathbf{S}_{2 x+1}^{2 t}\right), \quad\left(\mathbf{S}_{2 x-1}^{2 t+2}, \mathbf{S}_{2 x}^{2 t+1}\right)=\Phi_{\tau}\left(\mathbf{S}_{2 x-1}^{2 t+1}, \mathbf{S}_{2 x}^{2 t+1}\right)$

Breaking SO(3)

 symmetry - polarized equilibrium state

Breaking integrability

Set theoretic Yang-Baxter

$$
\hat{\Phi}_{\zeta_{2}-\zeta_{3}}^{(1,2)} \circ \hat{\Phi}_{\zeta_{1}-\zeta_{3}}^{(2,3)} \circ \hat{\Phi}_{\zeta_{1}-\zeta_{2}}^{(1,2)}=\hat{\Phi}_{\zeta_{1}-\zeta_{2}}^{(2,3)} \circ \hat{\Phi}_{\zeta_{1}-\zeta_{3}}^{(1,2)} \circ \hat{\Phi}_{\zeta_{2}-\zeta_{3}}^{(2,3)}
$$

Full counting statistics in deterministic many body dynamics
Exactly solvable charged hard point cellular automaton

$$
G(\lambda \mid t)=\rho^{2 t} \sum_{l=0}^{t} \sum_{r=0}^{t}\binom{t}{l}\binom{t}{r} \nu^{l+r} \mu_{-}^{\left|\Lambda_{-}\right|} \mu_{+}^{\left|\Lambda_{+}\right|}
$$

Critical scaling of cumulants

$$
\begin{aligned}
c_{n}(t) & \left.\equiv \frac{\mathrm{d}^{n}}{\mathrm{~d} \lambda^{n}}\right|_{\lambda=0} \log G(\lambda \mid t) \\
c_{n}^{[0]}(t) & =\sum_{l=0}^{r} c_{n \mid l}^{[0]} t^{(n-2 l) / 4}+\mathcal{O}\left(t^{(n-2(r+1)) / 4}\right) \\
c_{n}^{[b]}(t) & =\sum_{l=0}^{r} c_{n \mid l}^{[b]} t^{(n-l) / 2}+\mathcal{O}\left(t^{(n-(r+1)) / 2}\right)
\end{aligned}
$$

$$
\begin{array}{rlrl}
c_{2 \mid 0}^{[0]} & =\frac{2 \Delta}{\pi^{1 / 2}}, & \\
c_{4 \mid 0}^{[0]} & =\frac{6 \Delta^{2}}{\pi}(\pi-2), & c_{4 \mid 1}^{[0]} & =-\frac{4 \Delta}{\pi^{1 / 2}}, \\
c_{6 \mid 0}^{[0]} & =\frac{60 \Delta^{3}}{\pi^{3 / 2}}(4-\pi), & c_{6 \mid 1}^{[0]} & =\frac{60 \Delta^{2}}{\pi}(2-\pi), \\
c_{8 \mid 0}^{[0]} & =\frac{3360 \Delta^{4}}{\pi^{2}}(\pi-3), & c_{8 \mid 1}^{[0]} & =-\frac{1680 \Delta^{3}}{\pi^{3 / 2}}(4-\pi), \\
c_{10 \mid 0}^{[0]} & =\frac{7560 \Delta^{5}}{\pi^{5 / 2}}\left(3 \pi^{2}-40 \pi+96\right), & c_{10 \mid 1}^{[0]} & =\frac{201600 \Delta^{4}}{\pi^{2}}(3-\pi) .
\end{array}
$$

$$
\begin{aligned}
& c_{2| |}^{[b]}=2 \Delta^{2} b^{2} \\
& c_{2 \mid 1}^{b]}=\frac{2 \Delta}{\sqrt{\pi}}\left(1-b^{2}\right), \\
& c_{4 \mid 1}^{[b]}=\frac{24}{\sqrt{\pi}} \Delta^{3} b^{2}\left(1-b^{2}\right) \\
& c_{6 \mid 1}^{[b]}=-\frac{120}{\sqrt{\pi}} \Delta^{5} b^{4}\left(1-b^{2}\right) \\
& c_{8 \mid 1}^{[b]}=\frac{1344}{\sqrt{\pi}} \Delta^{7} b^{6}\left(1-b^{2}\right) \\
& c_{10 \mid 1}^{[b]}=-\frac{21600}{\sqrt{\pi}} \Delta^{9} b^{8}\left(1-b^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
c_{n>2 \mid 0}^{[b]} & =0 \\
c_{4 \mid 2}^{[b]} & =\frac{6 \Delta^{2}\left(1-b^{2}\right)}{\pi}\left[\left(1-b^{2}\right)(\pi-2)-\frac{8}{3} \pi b^{2}\right] \\
c_{6 \mid 2}^{[b]} & =\frac{360 b^{2} \Delta^{4}}{\pi}(\pi-2)\left(1-b^{2}\right)^{2}, \\
c_{8 \mid 2}^{[b]} & =-\frac{13440 \Delta^{6} b^{4}}{\pi}\left(1-b^{2}\right)^{2}, \\
c_{10 \mid 2}^{[b]} & =\frac{483840 \Delta^{8} b^{6}}{\pi}\left(1-b^{2}\right)^{2} .
\end{aligned}
$$

Dynamical criticality via Lee-Yang zeros

$$
\log G(\lambda \mid t)=\log g(\lambda \mid t)+\sum_{i=1}^{2 t} \log \left(1-\lambda / \lambda_{i}\right) . \quad \lambda_{i}(t) \xrightarrow{t \rightarrow \infty} \lambda_{c} \in \mathbb{R}
$$

Typical fluctuations

$$
\mathcal{P}_{\text {typ }}^{[b]}(j)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{j^{2}}{2 \sigma^{2}}\right], \quad \sigma^{2}=2(b \Delta)^{2}
$$

$$
\mathcal{P}_{\mathrm{typ}}^{[0]}(j)=\frac{1}{\sqrt{2} \pi \Delta} \int_{\mathbb{R}} \mathrm{d} u \exp \left[-\left(\frac{u^{2}}{2 \Delta}\right)^{2}-\frac{j^{2}}{2 u^{2}}\right]
$$

Dynamical Criticality of Magnetization Transfer in Integrable Spin Chains

Easy axis regime
Isotropic regime

Easy axis regime

Isotropic regime

